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Introduction

One of the major open problems in field theory is the inverse Galois problem, concerning

whether or not finite groups can be realized as Galois groups of suitable extensions of a

given field.

The main focus of this thesis is given by embedding problems, that generalize the

inverse Galois problem as follows. Given a tower of Galois extensions E ⊃ F ⊃ k, with

G,B the Galois groups of E, F over k respectively, we may consider an epimorphism

α : A� B where A is a profinite group and discuss the existence of an intermediate field

E ⊃M ⊃ K such that G(M |k) = A and the restriction homomorphism G(M |k)� G(F |k)

is exactly α. Via Galois correspondence, this translates to the problem of finding, for a

diagram

G

1 K A B 1

ϕ

α

of profinite groups where the row is exact, a surjective homomorphism ψ : G � A that

makes the diagram commute. We study the above problem (strong embedding problem)

for diagrams of pro-c-groups, i.e. inverse limits of finite groups belonging to a fixed

class c. We also deal with a relaxed version (weak embedding problem) in which we do

not require surjectivity for the map ψ. Furthermore, we apply the results of our discus-

sion to proving a theorem by K. Iwasawa about the arithmetic of global fields.

The thesis is structured as follows. The first two chapters constitute an introduction

to the theory of profinite groups.

In chapter 1, we discuss the topology of these groups and show how many alge-

braic properties of finite groups, such as the existence of p-Sylows or the structure of

the Frattini quotient for p-groups, have their profinite analogues. Moreover, we intro-

duce special sets of generators for a profinite group G, and link their cardinality to the

topological structure of G and the existence of specific chains of suhgroups of G. In our

exposition, we follow Chapters 1-2 of [RZ10].

In chapter 2, we introduce cohomology groups Hn(G,A), for a profinite group G and



ii

a discrete G-module A, and highlight their main functorial features; we also examine

how cohomology behaves with respect to subgroups and quotients, and study a funda-

mental invariant associated to a profinite group, namely its cohomological dimension. Our

presentation is mainly based on [NSW15], Chapters I-II and [RZ10], Chapters 6-7.

We then employ the tools introduced in the above chapters to the study of embed-

ding problems of pro-c-groups. Specifically, chapter 3 focuses on strong embedding

problems: following [RZ10], Chapter 3, we introduce the concept of free pro-c-groups,

and prove that the existence of strong solutions for a fixed group G in all reasonable

cases is equivalent to G being, in fact, free.

In chapter 4, we instead link the existence of weak solutions for G to its projectiv-

ity, and derive a characterization of projective pro-c-groups in terms of cohomological

dimension. We also discuss more closely the case of pro-p-groups, and prove that a

pro-p-group is projective if and only if it is free.

Finally, we use the results on embedding problems to prove Iwasawa’s theorem

about the maximal prosolvable extension K̃ of the maximal abelian extension K of a

global field: more specifically, we show that the Galois group G(K̃ |K) is the free pro-

solvable group of countable rank, so that the inverse Galois problem has a positive

answer for K in the case of solvable groups.

Our discussion of projective pro-c-groups combines the approaches found in [NSW15],

Chapter III and [RZ10], Chapter 7, while our proof of Iwasawa’s theorem is based on

Chapter IX of [NSW15].
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Chapter 1

Pro-c-groups

Profinite groups are topological inverse limits of discrete finite groups, and if such finite

groups belong to a given class c, we say their inverse limit is a pro-c-group.

Historically, attention to these classes of topological groups stems from infinite Ga-

lois theory: given a Galois extension L |k of infinite degree, with Galois group G =

G(L |k), one naturally has the identification G(L |k) = lim←−G(K |k), where K ranges through

the finite Galois intermediate extensions k ⊂ K ⊂ L, and the transition maps G(K |k) →
G(K ′ |k) for K ′ ⊂ K are restrictions.

Moreover, the Galois correspondence theorem extends to the infinite case compatibly

with the topological structure on G induced by endowing the finite groups G(K |k) with

the discrete topology, in the sense that intermediate extensions k ⊂ L ′ ⊂ L correspond

precisely to closed subgroups of G.

Nowadays, the theory of profinite groups has also applications to algebraic geometry

(the étale fundamental group of a scheme is profinite) and finite group theory.

In this chapter, we introduce profinite and pro-c-groups and highlight their main

properties, starting with their topological structure.

1.1 Topology of profinite groups

Characterization of profinite groups

We begin by recalling that, for an inverse system of topological spaces Xi (on a directed

set of indexes), the inverse limit X = lim←−Xi always exists and is given by the set{
(xi) ∈

∏
i

Xi | fji(xj) = xi for j > i

}
⊂
∏
i

Xi

where the fji : Xj → Xi are the transition maps. The subset topology coincides with

the initial topology induced by the canonical maps fi : X → Xi such that fi(x) = xi for

1



2 Chapter 1. Pro-c-groups

x = (xi | i) ∈ X.

The inverse limit G of an inverse system of topological groups Gi is just their topo-

logical inverse limit with the operation induced by the inclusion G ⊂
∏
iGi.

Lemma 1.1.1. Suppose X = lim←−Xi is an inverse limit of nonempty topological spaces, with

transition maps fji.

i) If the Xi are Hausdorff, X is closed in
∏
i Xi.

ii) If the Xi are also compact, X is nonempty.

Proof. To prove (i), let (xi) ∈
∏
i∈I Xi \ lim←−I Xi. We can find i 6 j in I such that fji(xj) 6= xi

and disjoint open neighborhoods Ui,Uj ⊂ Xi of xi, fji(xj) respectively. By the continuity

of fji there exists an open neighborhood V of xj such that fji(V) ⊂ Uj; thus, the set

V ×Ui ×
∏
k6=i,j

Xk

is an open subset of
∏
i∈I Xi \ lim←−I Xi containing (xi), and the conclusion follows.

Now assume the Xi are compact Hausdorff. Their product is also compact, and to

prove (ii) it is enough to write X as an intersection of closed subsets of
∏
i∈I Xi with the

finite intersection property.

For all j ∈ I, let

Yj =

{
(xi) ∈

∏
i∈I

Xi | ϕjk(xj) = (xk) for allk 6 j

}
.

Then Yj is non-empty and, arguing as in (i), we find it is a closed subspace of
∏
i Xi.

For every choice of indexes j1, . . . , jn, there exists an index k which is greater than all jt:

therefore
n⋂
t=1

Yjt ⊃ Yk 6= ∅,

which completes the proof of (ii).

We now proceed to describe inverse limits of finite discrete topological groups. We

need a preliminary lemma from topology.

Lemma 1.1.2. If X is a compact Hausdorff space, the connected component of a point x ∈ X is

the intersection I(x) of all clopen (i.e., both closed and open) subspaces of X containing x.

Proof. It is enough to prove that I = I(x) is connected. Consider two disjoint closed

subspaces A,B ⊂ X such that A ∪ B = I: we must prove that either A or B is empty.

Since X is compact Hausdorff, there exist two open subsets U,V ⊂ X containing A,B

respectively such that U∩ V = ∅.
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Then, X \U ∪ V is closed and the intersection I ∩ (X \U ∪ V) is empty: by the finite

intersection property of X, there exist finitely many clopen sets U1, . . . ,Un containing

x such that the intersection of C = U1 ∩ · · · ∩Un with X \U ∪ V is already empty, i.e.

C ⊂ U∪ V .

Consider the intersections C∩U,C∩V : they are both open, and each other’s comple-

ment in C, so they are also closed. Suppose, without loss of generality, that C ∩U 3 x.

Then I ⊂ C∩U ⊂ U, so that I(x)∩B = B = ∅.

Let us also remark a general fact about compact groups (the proof is straightforward).

Lemma 1.1.3. If G is a compact topological group, a subgroup H < G is open if and only if it is

closed and of finite index.

For a closed subgroup H of a profinite group G, the core of H is the intersection HG =⋂
x∈GH

x of its conjugates (we let Hx = x−1Hx). Note that HG is the maximal closed

subgroup of H which is normal in G.

Proposition 1.1.4. For a topological group G, the following are equivalent.

i) G is an inverse limit of finite discrete groups.

ii) G is compact Hausdorff and totally disconnected.

iii) G is compact Hausdorff, and 1 ∈ G has a fundamental system of neighborhoods made of

open normal subgroups.

Proof. Condition (i) implies that G is compact Hausdorff by Lemma 1.1.1. To see that

G = lim←−Gi is totally disconnected, let x,y be distinct elements of G; by Lemma 1.1.2, it

is enough to find a clopen subset of G that separates x from y. Since x 6= y, we can find

an index i such that ϕi(x) 6= ϕi(y), with ϕi : G→ Gi the canonical map: then ϕ−1
i (xi) is

the wanted clopen.

Now, assume (ii), and consider an open neighborhood U 6= G of x ∈ G. By Lemma

1.1.2, {x} equals the intersection I(x) of clopen sets containing x: since G \U is closed

and disjoint from I(x), and G is compact, there exist clopen sets U1, . . . ,Un containing x

such that
⋂n
i=1Ui ⊂ U. Hence, every x ∈ G has a fundamental system of neighborhoods

made of clopens; to prove (iii) we are then left with showing that any of them contains

an open normal subgroup, which is done by a standard argument.

Namely, fix a clopen set U 3 1 and let V = {v ∈ U | Uv ⊂ U}: we claim that V is open

in G. To see this, fix v ∈ V : for all u ∈ U the product uv belongs to U and, since U is

open, we can find open sets Uu,Vu in U,V respectively such that UuVu ⊂ U. Because U

is also compact, a finite number of the sets Uu, say U1, . . . ,Un, covers U: the intersection

Vv of the corresponding V1, . . . ,Vn is an open neighborhood of v in V .
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Since the inversion map x 7→ x−1 is a homeomorphism, the set H = V ∩ V−1 is also

open, and we prove that H is in fact a subgroup of G. The only nontrivial check is that,

if x,y ∈ H, also xy ∈ H: by definition we have Uxy ⊂ Ux ⊂ U, so that xy ∈ V , and the

same argument shows that (xy)−1 ∈ V . Since H is open, it has finite index in G; its core

HG has also finite index, and is therefore an open normal subgroup of G contained in U.

Finally, if G is as in (iii), let U be the collection of its open normal subgroups. For any

U ∈ U, G/U is a finite discrete group (the cosets xU are open in G for all x ∈ G, multipli-

cation by x being a homeomorphism of G), and we have a continuous homomorphism

ϕ : G→ lim←−
U

G/U

induced by the projections ϕU : G→ G/U. Then ϕ is injective because G is Hausdorff. In

order to prove surjectivity, fix (xU) ∈ lim←−U
G/U: the sets ϕ−1

U (xU) are nonempty compact

Hausdorff subsets of G. Therefore, by Lemma 1.1.1, their inverse limit is nonempty,

and any of its elements maps to (xU) through ϕ. Consequently, since G is compact and

lim←−U
G/U is Hausdorff, ϕ is an isomorphism.

Definition 1.1.5. A topological group G satisfying the conditions in Proposition 1.1.4 is called

a profinite group.

Remark 1.1.6. One has an analogue of Proposition 1.1.4 for topological spaces: namely,

a space X is an inverse limit of finite discrete topological spaces if and only if it is

compact Hausdorff and is moreover totally disconnected, or equivalently has a basis

made of clopen subsets (for a proof, see [RZ10], Theorem 1.1.12). In any of these cases,

we say X is a profinite space.

Remark 1.1.7. Let G = lim←−i∈IGi, where the Gi are compact Hausdorff groups.

i) Suppose I ′ ⊂ I is cofinal, i.e. for all i ∈ I there exists i ′ ∈ I ′ such that i ′ > i.

Then clearly the canonical map lim←−i∈IGi → lim←−i ′∈I ′ G
′
i is bijective and hence an

isomorphism. Therefore, if necessary, we can pass to a cofinal subset of I without

changing the limit.

ii) If ϕi : G → Gi are the projections, we have lim←−Gi = lim←−ϕi(G) via the restrictions

of the transition maps. Also, the inverse system formed by the ϕi(G) is surjective,

i.e. the transition maps are epimorphisms: therefore, we may always assume that

a profinite group is the limit of a surjective inverse system.

Let us isolate a useful lemma for future reference.
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Lemma 1.1.8. Let G = lim←−Gi be a profinite group, where the Gi are discrete finite groups, and

let ϕi : G → Gi the canonical maps. The kernels ker(ϕi) constitute a fundamental system of

neighborhoods of 1.

Proof. By definition of the topology on G, it is enough to show that any open set of the

form

G∩

 s∏
j=1

1ij ×
∏

i 6=i1,...,is

Gi

 ,

where 1ij < Gij is the trivial subgroup, contains some ker(ϕi). To do so, pick some

k > i1, . . . , in and notice that

G∩

 s∏
j=1

1ij ×
∏

i 6=i1,...,is

Gi

 = G∩

1k ×∏
i 6=k

Gi

 ,

with the right hand side being precisely ker(ϕk).

Basic properties of profinite groups

We now proceed to highlight some useful consequences of the above characterization of

profinite groups.

The first concerns more generally compact Hausdorff groups. Recall that, as a func-

tor from the category of inverse systems of topological groups to the category of topo-

logical groups, lim←− is left exact. Namely, suppose

1→ {Ai,ϕji}→ {Bi,ψji}→ {Ci,χji}→ 1

is an exact sequence of inverse systems of topological groups (on the same directed set),

i.e for all i there are exact sequences

1→ Ai → Bi → Ci → 1

compatible with the transition maps (in the obvious sense) for all j > i; then, the se-

quence

1→ lim←−Ai → lim←−Bi → lim←−Ci

is exact. In general, though, lim←− is not right exact, as one sees by considering, for

example, the epimorphisms Z � Z/pnZ for all n > 0 and observing that the induced

map

Z→ Zp = lim←−
n

Z/pnZ

is not surjective (in fact, Zp is uncountable, see Remark 1.2.5).

Fortunately, this example gets annihilated if we restrict to the subcategory of (inverse

systems of) compact Hausdorff groups.
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Proposition 1.1.9. Suppose A = lim←−Ai and B = lim←−Bi are inverse limits of compact Hausdorff

groups, and let ϑi : Ai → Bi be compatible epimorphisms. Then the induced map

lim←− ϑi : A→ B

is again an epimorphism.

Proof. This is again an application of Lemma 1.1.1: consider a sequence (bi) ∈ B, and

note ϑ−1i (bi) ⊂ Ai is compact for all i. Then, lim←− ϑ
−1
i (bi) ⊂ A is nonempty, and any of its

elements maps to (bi).

Corollary 1.1.10. The functor lim←− is exact from the category of inverse systems of compact

Hausdorff groups to the category of compact Hausdorff groups.

Corollary 1.1.11. Let G = lim←−Gi be a profinite group, where the Gi are discrete finite groups,

and call ϕi : G→ Gi the projections. If H < G is a closed subgroup,

H = lim←−ϕi(H).

Proof. The map H→ lim←−ϕi(H) induced by the ϕi is clearly injective, and is surjective by

Proposition 1.1.9. Since H is compact, it is a homeomorphism.

Next, we deal with the existence of factorizations and sections for some suitable maps.

Proposition 1.1.12. Let {Gi,ϕji} be an inverse system of profinite groups over a directed set I,

with inverse limit G, and suppose ρ : G → H is a continuous homomorphism to a finite discrete

group H. Then, there exists k ∈ I such that ϕ factors through the projection ϕk : G → Gk, i.e.

the diagram

G H

Gk

ρ

ϕk
ρ

commutes, for some suitable continuous homomorphism ρ : Gk → H.

Proof. For each index i, write Gi = lim←−Ui
Gi/U where Ui is the set of open normal

subgroups of Gi and U ∈ Ui. Then, if U varies in U =
⋃
i Ui, the quotients Gi/U can

be made into an inverse system of finite groups, with transition maps Gj/V → Gi/U

induced by ϕji any time that V < ker(Gj → Gi � Gi/U), and it is apparent that G =

lim←−U
Gi/U.

According to Proposition 1.1.8, the kernels of the compositions ϕ(k)
U : G → Gk →

Gk/U, with U ∈ U, constitute a fundamental system of open neighborhoods of 1 ∈
G. Consequently, since ker(ρ) is open (H being finite), there is some U ∈ U such that

ker(ϕ(k)
U ) < ker(ρ): in particular, ker(ϕk) < ker(ρ), and the conclusion follows.
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For a map f : X → Y of topological spaces, we say that g : Y → X is a section for f if it is

continuous and f ◦ g is the identity map on Y.

Proposition 1.1.13. Let H < G be a closed normal subgroup of a profinite group G. The projec-

tion π : G→ G/H admits a section σ (as a map of topological spaces). Moreover, we may assume

σ(H) = 1.

Proof. We prove the case when H is finite directly, and then use Zorn’s lemma for the

general case.

Suppose H is a finite normal subgroup of G, and pick an open normal subgroup U in-

tersecting H trivially (consider the intersection of finitely many open normal subgroups

Uh < G such that Uh 63 h, for h ∈ H \ {1}). The restriction of π to U gives a continuous

isomorphism U → π(U), and its inverse σ : π(U) → U extends to a continuous map

G/H→ G by translation to cosets of π(U).

Now, let H < G be a closed normal subgroup, and order the pairs (K, τ) of closed

normal subgroups of H and sections of G/K → G/H by defining (K, τ) 6 (K ′, τ ′) if and

only if K ⊃ K ′ and τ ′ is the composition of τ with the projection G/K ′ → G/K. Then the

set of such pairs is non-empty and an ascending chain (Ki, τi) is bounded from above

by (
⋂
i Ki,

⋃
i τi). We may therefore find a maximal pair (M, ξ) and must show M = 1.

Suppose this is not the case and pick an open normal subgroup U such that M ∩
U � M (choose an element m ∈ M different from 1 and pick U 63 m): the projection

G/M ∩U → G/M admits a continuous section by the finite case, since M/M ∩U is a

finite subgroup of G/M ∩U, and therefore so does G → G/M ∩U by composition with

ξ, a contradiction.

The last basic property of profinite groups we need concerns closed subgroups.

Proposition 1.1.14. Let H < G be a closed subgroup of a profinite group G. Then H is the

intersection of all open sugroups of G containing H; if H is normal, it is the intersection of all

open normal subgroups of G containing it.

This is an easy consequence of the following technical lemma.

Lemma 1.1.15. Suppose {Ui | i ∈ I} is a set of open subgroups of G filtered from below, i.e. such

that for all i, j ∈ I, Ui ∩Uj ⊃ Uk for some k ∈ I. Then

H

(⋂
i

Ui

)
=
⋂
i

HUi.

Proof. It is clear that the result holds if I is finite, and that in general the inclusion

H

(⋂
i

Ui

)
⊂
⋂
i

HUi
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holds. For the reverse inclusion, pick x ∈
⋃
iHUi, and note

Hx∩
⋂
j∈J
Uj 6= ∅

for all finite J ⊂ I such that {Uj | j ∈ J} is filtered from below. Because G is compact, this

implies that

Hx∩
⋂
i∈I
Ui 6= ∅,

and the result follows.

Proof (of Proposition 1.1.14). Suppose H < G is closed: by Lemma 1.1.15, H =
⋂
UHU, if

U runs through open normal subgroups of G. If moreover H is normal, and an open

subgroup U < G contains H, then its core UG is open normal in G and HUG < U.

1.2 Algebraic properties of pro-c-groups

From now on, subgroups of a profinite groups are always assumed to be closed, and

homomorphisms are always assumed to be continuous.

Pro-c-groups

In what follows, the symbol c will always stand for a nonempty class of finite groups,

i.e. a collection of finite groups such that any isomorphic image of a group in c is still in

c: we say a group contained in c is a c-group.

We shall also implicitly assume that c be closed under taking subgroups, quotients

and finite direct products. If moreover c is extension-closed, i.e. for any exact sequence

1→ K→ G→ G→ 1

such that K and G are c-groups, so is G, we shall call it full class of finite groups.

Examples of full classes include all finite, solvable or π-groups for a set of primes π ⊂
Z, while the classes of abelian and nilpotent groups are closed under taking subgroups,

quotients and finite products, but are not full classes.

Definition 1.2.1. A topological group G is called a pro-c-group if it can be expressed as

G = lim←−Gi,

where the Gi are c-groups.

When c is the full class of finite groups, we get precisely profinite groups; similarly, we

shall say a group is prosolvable, pro-π, proabelian, pronilpotent when it is a pro-c-group

with c being the class of solvable, π-, abelian, nilpotent groups respectively.
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Remark 1.2.2. i) If G is a pro-c-group, so is any subgroup H < G by Corollary 1.1.11.

Also, if U < G is an open normal subgroup, then G/U is a c-group by Lemma 1.1.8,

and therefore any quotient of a pro-c-group is itself pro-c. By Corollary 1.1.9, if c

is a full class, any extension of pro-c-groups is a pro-c-group.

ii) For an abstract group G, consider the set Nc = Nc(G) of normal finite index sub-

groups N of G such that the quotient G/N is a c-group. Then {G/N | N ∈ Nc} is

made into an inverse system via the projections ϕMN : G/M → G/N for M < N.

Its inverse limit

Gĉ = lim←−
Nc

G/N

is a pro-c-group, called the pro-c-completion of G, and the map

G→ Gĉ

induced by the projections G → G/H is injective if and only if
⋂
Nc = 1. The

profinite and pro-π-completions of G are denoted by Ĝ and Gπ̂ respectively.

iii) For a profinite group G, we instead let

G(c) = lim←−
Uc

G/U

where Uc is the set of open normal subgroups U of G such that the quotient G/U is

a c-group. It is plain that G(c) = G/
⋂
Uc is the maximal pro-c-quotient of G, that is if

K < G is normal and G/K is a pro-c-group, then K >
⋂
Uc.

iv) As a basic example of (ii), note that

Zp̂ = lim←−
n

Z/pnZ = Zp,

and, if π(N) is the subset of natural numbers with prime factors in π,

Zπ̂ = lim←−
π(N)

Z/nZ.

Note that, if n ∈ π(N) has prime decomposition
∏
p∈π p

n(p), we have natural epi-

morphisms
∏
p∈π Zp �

∏
p∈π Z/pn(p)Z = Z/nZ giving rise to a homomorphism∏

p∈π Zp → lim←−n∈π(N)
Z/nZ. This map is easily seen to be injective, and is surjec-

tive by Proposition 1.1.9; therefore, we have the identification

Zπ̂ =
∏
p∈π

Zp.

More generally, if π(c) is the set of primes such that Z/pZ is a c-group, the pro-c-

completion of Z is

Zĉ =
∏
p∈π(c)

Zp.
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Index and Sylow theorems

As a consequence of the exactness of lim←− (see Corollary 1.1.9), we can build a profinite

analogue for many structures and concepts that are central in finite group theory.

We start with order and index.

Definition 1.2.3. A supernatural number is a formal product

n =
∏
p

pn(p)

where p runs through prime numbers in N and n(p) is either a natural number or∞.

For a sequence of supernatural numbers ni, we can define in a natural way, using prime

decomposition, their product, lcm and gcd: namely, the exponent of each prime p is

respectively
∑
i ni(p), supi ni(p) and infi ni(p), with the usual conventions about ∞.

We also have an obvious notion of divisibility between two supernatural numbers: n | m

if and only if n(p) 6 m(p) for all primes p.

Definition 1.2.4. For a subgroup H < G of a profinite group, the index of H in G is defined as

[G : H] = lcm {[G/U : HU/U] | U}

where U runs through the normal open subgroups of G. The order of G is defined as

#G = lcm {|G/U| | U} = [G : 1].

Remark 1.2.5. i) Extending the definition of order of a profinite group as its cardi-

nality would be of poor use: as an immediate consequence of Baire’s category

theorem, an infinite profinite group is always uncountable.

ii) When computing the index [G : H] of a subgroup H < G, we can reduce to take

the lcm over a fundamental system of neighborhoods of 1 made of open normal

subgroups; also, [G : H] is a natural number if and only if H is open.

iii) It is easily checked that indexes are multiplicative, i.e. if K < H are subgroups of

G we have [G : K] = [G : H][H : K].

iv) A profinite group G is a pro-π-group for some set of primes π if and only if the

prime factors of #G (i.e. the primes p dividing #G) are in π.

We proceed to prove the profinite version of Sylow theorems.

Definition 1.2.6. A p-Sylow subgroup of a profinite group G is a pro-p-subgroup Gp < G such

that p - [G : Gp].
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For a profinite group G, denote by Sylp(G) the set of p-Sylows of G.

Theorem 1.2.7. Let G be a profinite group, p a prime number.

i) There exists a p-Sylow Gp of G.

ii) Any pro-p-subgroup of G is contained in a conjugate of Gp. In particular, all p-Sylows of

G are conjugate.

Proof. To prove (i), write G = lim←−Gi as a surjective inverse system of finite discrete

groups Gi, and make the sets Si = Sylp(Gi) into an inverse system by noting that the

transition maps ϕji : Gj → Gi induce maps σji : Sj → Si such that σji(Pj) = ϕji(Pi).

Then,

S = lim←−Si 6= ∅

by Lemma 1.1.1. Let Gp = lim←−Pi for some element (Pi) in S: clearly, Gp is a pro-p-group.

Also, by Lemma 1.1.8 and Remark 1.2.5,

[G : Gp] = lcmi[G/Ui : GpUi/Ui] = lcmi[Gi : Pi],

where Ui is the kernel of the canonical map ϕi : G → Gi. Therefore, p does not divide

[G : Gp], and Gp is the desired p-Sylow.

Now, let Q = lim←−Qi < G be a pro-p-subgroup, where Qi = ϕi(Q). For all i, set

Ci = {g ∈ Gi | Pgi ⊃ Qi} and again, make the Ci into an inverse system by restricting the

ϕji to Cj whenever they are defined, and pick an element g = (gi) ∈ lim←−Ci 6= ∅. Then

Pg > Q and (ii) is proved.

The Frattini subgroup

First, we recall some properties of the Frattini subgroup of a finite group G. It is defined

as the intersection Φ(G) of all maximal subgroups of G (since G is finite, they always

exist).

A non-generator for a finite group G is an element x ∈ G such that the equation

〈X, x〉 = G for some subset X ⊂ G implies 〈X〉 = G.

Proposition 1.2.8. Let G be a finite group.

i) (Frattini’s argument) If K < G is a normal subgroup and P ∈ Sylp(K), then G =

KNG(P), where NG(P) is the normalizer of P in G.

ii) Φ(G) is the set of non-generators of G, and if Φ(G)K = G for some K < G, then K = G.

iii) Φ(G) is nilpotent.
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Proof. To prove (i), note that both G and K act transitively on Sylp(K) by conjugation, so

that if x ∈ G there exists y ∈ K such that Px = Py, hence xy−1 ∈ NG(P).

For (ii), clearly a non-generator x must belong to all maximal subgroups of G, thus

x ∈ Φ(G); conversely, if 〈X, x〉 = G but 〈X〉 ( G for some X ⊂ G, pick a maximal subgroup

M ⊃ 〈X〉 and conclude that x 6∈ M. Consequently, if Φ(G) = 〈x1, . . . , xn〉, and Φ(G)K =

〈x1, . . . , xn,K〉 = G, one concludes by induction on n that K = G, since the xi are non-

generators.

Now, take a p-Sylow P of Φ(G): by (i), G = Φ(G)NG(P) (since Φ(G) is obviously

characteristic in G) and therefore G = NG(P) by (ii). In particular, Φ(G) has a unique

p-Sylow for all p, and is therefore nilpotent.

Proposition 1.2.9. Suppose that G is a finite p-group for some prime p.

i) The Frattini quotient G/Φ(G) is elementary abelian.

ii) Φ(G) = 1 if and only if G is elementary abelian.

iii) Φ(G) = [G,G]Gp, where [G,G] is the commutator subgroup of G and Gp is the subgroup

generated by p-th powers.

Proof. To prove (i), recall that every maximal subgroup of G is normal of index p: there-

fore, we have a natural surjection G�
∏
MG/M where M ranges through the maximal

subgrups of G, whose kernel is Φ(G). Since the right hand side is a finite product of

cyclic groups of order p, (i) follows. Also, if Φ(G) = 1, the above map is an isomorphism,

and therefore G itself is elementary abelian; this implies (ii), since clearly the intersection

of maximal subgroups in (Z/pZ)n is trivial.

Finally, (i) implies that Φ(G) > Q = [G,G]Gp. Conversely, by (ii), Φ(G/Q) is trivial:

thus, if x 6∈ Q and x is its image in G/Q through the canonical projection, there is some

maximal M < G such that x 6∈M/Q, which implies x 6∈ Φ(G).

Let now G be a profinite group.

Definition 1.2.10. The Frattini subgroup of G as the intersection Φ(G) of all maximal sub-

groups of G.

The above definition is well posed since a profinite group always has finite index sub-

groups and, consequently, also maximal (closed) subgroups, that are in fact always open

(see Proposition 1.1.14).

Definition 1.2.11. A subset X ⊂ G of a profinite group generates G if the abstract subgroup

generated by X is dense in G, i.e. 〈X〉 = G (where the overline denotes the closure operator).
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Remark 1.2.12. i) By arguing as in the finite case, one proves that Φ(G) is the set

of nongenerators of G, i.e. elements x ∈ G such that any time X ⊂ G is such that

〈X, x〉 = G, already 〈X〉 = G.

ii) If G = lim←−Gi is a surjective limit of finite groups, it is easily checked that Φ(G) =

lim←−Φ(Gi). As a consequence, Φ(G) is in fact pronilpotent for a profinite group G.

We shall need the pro-p version of Proposition 1.2.9.

Lemma 1.2.13. Every maximal subgroup M of a pro-p-group G is normal of index p.

Proof. Consider the core MG of M: then M/MG is normal of index p in G/MG, and the

result follows.

Proposition 1.2.14. Let G be a pro-p-group for some prime p.

i) The Frattini quotient G/Φ(G) is a direct product of cyclic p-groups.

ii) We have the equality Φ(G) = [G,G]Gp

Proof. By Lemma 1.2.13, we may again consider the map G →
∏
MG/M induced by

projections G� G/M, where M runs through maximal subgroups of G. Since its kernel

is Φ(G), and it is surjective by Proposition 1.1.9, we get an isomorphism G/Φ(G) '∏
MG/M.

For statement (ii), we have the inclusion Φ(G) > Q = [G,G]Gp by (i). Conversely,

let x 6∈ Q and pick an open normal subgroup U < G such that xU ∩QU = ∅ (observe

that
⋂
U(xU ∩QU) = ∅ and apply the finite intersection property). The Frattini quotient

(G/U)/(QU/U) is finite elementary abelian, and therefore has trivial Frattini subgroup

by Proposition 1.2.9: since x maps to a nontrivial element, there is some maximal sub-

group in (P/U)/(QU/U) missing the image of x, and the conclusion is clear.

Pontryagin duality

We end this section by stating a fundamental duality result for LCA groups, that is,

locally compact Hausdorff abelian groups (for a proof, we refer to Theorem 1.7.2 of

[Rud90]). Let T be the circle group, i.e. the group R/Z with the quotient topology.

Definition 1.2.15. For a LCA group A, its Pontryagin dual is Ag = Hom(A, T) endowed

with the compact-open topology.

Remark that, if A is torsion, Ag ' A∗ = Hom(A, Q/Z) as an abelian group (and also as

a topological group if A is discrete).
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Theorem 1.2.16 (Pontryagin). Let A be a LCA group.

i) Its Pontryagin dual Ag is again a LCA group.

ii) The canonical map α : A→ (Ag)g such that α(x)(γ) = γ(x) for all x ∈ A and γ ∈ Ag is

a natural isomorphism of topological groups.

iii) If A is compact, Ag is discrete, and viceversa; if A is profinite, Ag is discrete torsion, and

viceversa.

1.3 Generators and chains of subgroups

We now look at special systems of (topological) generators for a profinite group G, and

show how their cardinality relates to the topology and the lattice of subgroups of G.

We say that a sequence (xi | i) of elements of a profinite group G converges to 1 if

every open subgroup U < G contains almost all, i.e. all but finitely many, elements xi.

Definition 1.3.1. A set of generators converging to 1 for G is a subset X = {xi | i ∈ I} ⊂ G
such that G = 〈X〉 and the sequence (xi | i ∈ I) converges to 1.

Proposition 1.3.2. A profinite group G always admits a set of generators converging to 1.

Proof. We apply Zorn’s lemma to the pairs (N,XN) of normal subgroups N < G and

subsets XN ⊂ G \N such that G = 〈N,XN〉 and every open subgroup U > N of G

contains almost every element of XN, ordered by setting (N,XN) 6 (M,XM) if and only

if N > M, XN ⊂ XM and XM \ XN ⊂ N. Then, an ascending chain (Ni,XNi) is bounded

from above by (Ñ,X
Ñ
) = (

⋂
iNi,

⋃
i Xi), provided we show that this is still a valid pair.

To see why this is the case, note that G/Ñ = lim←−G/Ni, hence X
Ñ

generates G modulo

Ñ, which implies G = 〈Ñ,X
Ñ
〉. Also, suppose U < G is open and contains Ñ =

⋂
iNi:

since G \U is compact, the open cover {G \Ni | i} has a finite subcover, hence there exists

some i such that U > Ni; therefore, X
Ñ
\U = XNi \U is finite.

Thus, consider a maximal pair (M,XM) and suppose M 6= 1: if U < G is an open

subgroup such that U ∩M � M, let Y be a finite subset of M such that M = 〈U ∩M, Y〉,
and consider the pair (U∩M,XM ∪ Y). It is still a valid pair and it is strictly greater that

(M,XM), a contradiction.

As a consequence, the following definition is well posed.

Definition 1.3.3. For a profinite group G, d(G) the smallest cardinality of a set of generators

converging to 1 for a profinite group G.
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Note that G is finitely generated, i.e. there exists a finite subset X ⊂ G such that

G = 〈X〉, if and only if d(G) is finite.

We now give some useful characterizations of d(G).

If G is a profinite group, define its local weight w0(G) as the smallest cardinality of a

fundamental system of neighborhoods of 1.

For a subset X ⊂ G, let ρ(X) be the cardinality of the set of clopen subsets of X.

Proposition 1.3.4. Let G be a profinite group. If d(G) is infinite, and X is a set of generators of

G converging to 1, |X| = w0(G). In particular, d(G) = w0(G).

We need two preliminary lemmas.

Lemma 1.3.5. Suppose X is an infinite set of generators converging to 1 of a profinite group G.

Then

i) X \ {1} is discrete,

ii) X = X∪ {1}.

In particular, if 1 6∈ X, X is the Alexandroff compactification of X, and ρ
(
X
)
= |X|.

Proof. Pick x ∈ X \ {1} and let U < G be an open subgroup of G such that x 6∈ U: then

Ux ∩ X is finite, say equal to {x, x2, . . . , xn}. Choosing open subsets Ui such that x ∈
Ui, xi 6∈ Ui for i = 2, . . . n, and setting V = U∩U2 ∩ · · · ∩Un, we get X∩ V = {x}.

It is plain that 1 ∈ X. If y 6= 1 does not belong to X, we can find an open subgroup

U < G not containing y, so that G \U is an open neighborhood of y containing at most

finitely many points of X. Arguing as above, we conclude y has an open neighborhood

V disjoint from X.

The last statement is clear, since the clopen subsets of X are the finite subsets of X \ {1}

and their complements in X.

Lemma 1.3.6. If G is an infinite profinite group, then w0(G) = ρ(G).

Proof. Clearly, w0(G) 6 ρ(G) since G is profinite. Conversely, observe that the translates

of a fundamental system of neighborhoods of 1 whose cardinality is w0(G) give a basis

U for G such that |U| = w0(G). For every clopen set V ⊂ G, we can find finitely many

elements UVi of U such that
⋃
iU
V
i = V . This defines an injective function V 7→

{
UVi | i

}
from the set of clopen sets of G to the set of finite subsets of U, and the result follows.

Proof (of Proposition 1.3.4). By Lemma 1.3.5, we may reduce to prove that for an infinite

closed set X of generators converging to 1 of G we have w0(G) = ρ(X); since clearly
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ρ(X) 6 ρ(G) and ρ(G) = w0(G) according to Lemma 1.3.6, we only need to show that

ρ(X) > w0(G).

By Propostion 1.1.4, w0(G) is the cardinality of the set of open normal subgroups

U < G. If U < G is open normal, it arises as the kernel of a homomorphism G→ H into

a finite group H, and such a map is uniquely determined by its values on at most |H|

clopens of X. Therefore, there are at most ρ(X) such maps, and w0(G) 6 ρ(X).

Theorem 1.3.7. Let G be a pro-c-group, and µ be a cardinal. Then w0(G) 6 µ if and only if

there exists a chain

G = G0 > G1 > · · · > Gλ > · · · > Gµ = 1

of normal subgroups Gλ < G for λ 6 µ with the following properties:

i) for all λ < µ, Gλ/Gλ+1 is a c-group,

ii) if λ is a limit ordinal, Gλ =
⋃
ν<λGν.

If G is infinite, we may assume w0(G/Gλ) < w0(G) for all λ < µ.

Proof. We may assume G to be infinite. Let µ = w0(G) and consider a fundamental

system {Uλ | λ < µ} of neighborhoods of 1 made of open normal subgroups of G. For

all λ 6 µ, set Gλ =
⋂
ν<λUν. Then Gλ is a pro-c-group for all λ, and (i) and (ii) are

clearly verified. To prove the last statement, observe that the set {Uν/Gλ | ν < λ} is a

fundamental system of neighborhoods of 1 in G/Gλ: consequently, w0(G/Gλ) 6 |λ| < µ.

Conversely, suppose the existence of a chain of open normal subgroups Gλ < G

indexed by λ 6 µ and verifying (i) and (ii). It is enough to prove that w0(G/Gλ) 6 |λ| for

all λ 6 µ, and we proceed by induction on λ, the case λ = 1 being trivial.

If λ = ν+ 1, let Uν be a set of open normal subgroups of G containing Gν such that

|Uν| 6 |ν|; then, the set {U/Gν | U ∈ Uν} is a fundamental system of neighborhoods of

1. Since [Gν : Gλ] is finite, we can find an open normal subgroup V < G such that

Gλ = Gν ∩ V . Thus,
⋂
U∈Uν(U ∩ V) = Gλ and {(U ∩ V)/Gλ | U ∈ Uν} is a fundamental

system of neighborhoods of 1 of G/Gλ, which implies w0(G/Gλ) 6 |λ|.

If λ is a limit, choose Uν as in the previous case for all ν 6 λ, and let Uλ be the

set of finite intersections of elements in
⋃
ν<λ Uν. Then, as before,

⋂
U∈Uλ U = Gλ and

consequently the set {U/Gλ | U ∈ Uλ} is a fundamental system of neighborhoods of 1 in

G/Gλ. Finally, we have

|Uλ| 6
∑
ν6λ

|Uν| 6
∑
ν6λ

|ν| 6 |λ|,

and the conclusion follows.
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Corollary 1.3.8. Let H < G be a normal subgroup of a profinite group G. If either G or H is

infinite,

w0(G) = w0(H) + w0(G/H).

Proof. Letting U run through the open normal subgroups of G, the sets {U/H | U > H}

and {U ∩H | U 6< H} are fundamental systems of neighborhoods of 1 for G/H and H

respectively, so that w0(G) > w0(H) + w0(G/H). Conversely, if µ = w0(G/H),ν = w0(H),

we have a chain

G0 = G > · · · > Gµ = H = H0 > · · · > Hν = 1

of open normal subgroups of G satisfying the conditions of Theorem 1.3.7, whence

w0(G) 6 µ+ ν.

Corollary 1.3.9. Let G be a pro-c-group and H < G be a normal subgroup. There exist some

cardinal µ and a chain

H = H0 > H1 > · · · > Hλ > · · · > Hµ = 1,

with the following properties:

i) for all λ < µ, Hλ+1 is normal in G and Hλ/Hλ+1 is a c-group,

ii) for all λ < µ, Hλ+1 is maximal in Hλ with respect to these properties;

iii) if λ 6 µ is a limit ordinal, Hλ =
⋂
ν<λHν;

iv) if H is infinite, and M < G is a normal subgroup containing K such that w0(M/H) <

w0(G), then w0(M/Hλ) < w0(G) for all λ < µ.

Proof. Again, we may assume H infinite. The set UH = {U∩H | U < Gopen normal} is a

fundamental system of open neighborhoods of 1 in H. Let µ = |UH| = w0(H), and choose

an indexing UH = {Uλ | λ < µ}. For all λ 6 µ, set Hλ =
⋂
ν<λUν.

Then (i) and (iii) clearly hold, and we may assume (ii) holds as well by inserting

finitely many subgroups between Hλ and Hλ+1. To verify (iv) observe that {Uν/Hλ | ν <

λ} is a fundamental system of neighborhoods of 1 in H/Hλ, so that w0(H/Hλ) 6 |λ| < µ,

and apply the previous Corollary to get

w0(M/Hλ) = w0(M/H) + w0(H/Hλ) < w0(G)

as wanted.

We end this section with two results about finitely generated groups. The first one

sharpens Theorem 1.3.7.
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Lemma 1.3.10. Let G be a finitely generated profinite group.

i) For all n > 0, G has finitely many subgroups of index n.

ii) There is a fundamental system of neighborhoods of 1 consisting of a countable chain

G = V0 > V1 > · · ·

of open characteristic subgroups of G.

Proof. In order to show (i), it is enough to prove that there are finitely many normal

subgroups of index n, since an open subgroup H of G has finitely many conjugates and

its core has finite index.

An open normal subgroup N < G of index n is the kernel of an epimorphism ϕ :

G → E where E is a finite group of order n. Since the restriction of ϕ to a finite set of

generators of G determines ϕ, we only have finitely many such maps. Combined with

the fact there are only finitely many (isomorphism classes of) groups of order n, this

concludes.

For (ii), let Vn be the intersection of all open normal subgroups of index n.

An abstract group G is Hopfian if any surjective endomorphism of G onto itself is an

isomorphism. Finitely generated profinite groups have the topological analogue of the

Hopfian property.

Proposition 1.3.11. A finitely generated profinite group G is Hopfian, i.e. every (continuous)

surjective endomorphism ϕ : G→ G is an isomorphism.

Proof. It is enough to prove that ϕ is injective, i.e. ker(ϕ) belongs to every open normal

subgroup of G. For each n, let Nn be the finite set of open normal subgroups of G of

index n, and consider the map Nn → Nn sending U→ ϕ−1(U): by the surjectivity of ϕ,

it is injective, and therefore bijective since Nn is finite by Lemma 1.3.10. Consequently, if

U is an open normal subgroup of G, there exists an open normal subgroup V < G such

that U = ϕ−1(V), and thus U > ker(ϕ).
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Cohomology and cohomological

dimension of profinite groups

After we showed their main topological and algebraic features, we are ready to introduce

cohomology for a profinite group G (together with a related invariant, cohomological

dimension). Its definition is analogous to the case of abstract groups, and many of the

properties of abstract cohomology are still valid in our setting. In particular, though

we won’t be able to describe it as an Ext functor for some module over a specific ring

related to G, we shall prove that cohomology groups are still the derived functors of the

functor that sends a G-module to its fixed submodule.

In order to do so, we first recall some notions from homological algebra.

Let A,B be abelian categories. A (cohomological) δ-functor H• = (Hn)n>0 is a se-

quence of additive functors Hn : A→ B together with morphisms δ : Hn(C)→ Hn+1(A)

defined for any short exact sequence 0→ A→ B→ C→ 0 in A in a way that

i) δ is functorial, i.e. for every n > 0 and every exact diagram

0 A B C 0

0 A ′ B ′ C ′ 0

in A, the square

Hn(C) Hn+1(A)

Hn(C) Hn+1(A)

δ

δ

is commutative;
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ii) for any short exact sequence 0→ A→ B→ C→ 0 in A, the sequence

· · · Hn−1(C) Hn(A) Hn(B) Hn(C) · · ·δ δ

is exact.

A morphism of δ-functors H• → K• is a sequence of morphisms Hn → Kn such that the

diagram

Hn(C) Hn+1(A)

Kn(C) Kn+1(A)

δ

δ

commutes for every short exact sequence 0→ A→ B→ C→ 0.

We say a δ-functor H• : A → B is universal if, for every δ-functor K• : A → B,

a morphism of functors H0 → K0 admits an extension to a morphism of δ-functors

H• → K•.

By definition, there exists at most one universal δ-functor H• such that H0 equals a

fixed functor F; in particular, two universal δ-functors H•,K• such that H0 = K0 are in

fact equal.

An additive functor F : A → B is effaceable if any object A of A admits a monomor-

phism u : A→ A ′ such that F(u) = 0; a δ-functor H• : A→ B is called effaceable if every

Hn is effaceable for n > 0. We have the following result (see [Gro57], Proposition 2.2.1).

Theorem . An effaceable δ-functor H• : A→ B is universal.

The concept of δ-functor generalizes that of derived functor. If F : A → B is an

additive functor, we call right derived functor for F, if it exists, the unique universal coho-

mological δ-functor R•F such that R0F = F.

2.1 Cohomology of profinite groups

Discrete G-modules

Let G be a profinite group. A G-module A is a topological abelian group endowed with

a continuous G-action, i.e. a continuous map G×A → A, say (x,a) 7→ xa, such that

1a = a and x(ya) = (xy)a for all x,y ∈ G and a ∈ A. If A,B are G-modules, a continuous

homomorphism ϕ : A→ B is a G-homomorphism if ϕ(xa) = xϕ(a) for all x ∈ G and a ∈ A.

For our purposes, we shall need G-modules to be discrete. We denote by DMod(G)

the category of discrete G-modules with G-maps.

Definition 2.1.1. For a subgroup H < G, we call AH = {a ∈ A | ha = a for allh ∈ H} the

H-fixed submodule of A.
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Remark 2.1.2. i) One sees immediately that G-maps preserve fixed submodules. There-

fore the assignment A → AG induces a functor DMod(G) → Ab to the category of

abelian groups, which is easily seen to be left exact.

ii) If H < G, AH is by definition a trivial H-module (i.e. H acts trivially on its ele-

ments). If moreover H is normal in G, AH becomes a G/H-module in a natural

way, by setting (Hx)a = xa for all x ∈ G and a ∈ A.

Discrete G-modules are characterized as follows.

Lemma 2.1.3. For a G-module A, the following are equivalent.

i) A is a discrete G-module.

ii) The stabilizers Ga are open in G for all a ∈ A.

iii) A =
⋃
UA

U, where U runs through the open subgroups of G.

Proof. Since Ga equals the preimage of the continuous map G → A sending x 7→ xa, (i)

implies (ii). Also, (ii) implies (iii) since AGa 3 a for all a ∈ A.

Finally, to prove that (iii) implies (i) we have to find an open subset of G×A mapping

to a through the action of G for any fixed a ∈ A: pick U < G open such that a ∈ AU, and

observe that U× {a} is open in G×A and xa = a for all x ∈ U by the definition of AU.

From now on, all G-modules are assumed to be discrete.

Definition of the cohomology groups

We turn to the definition of cohomology groups for a fixed G-module A.

For n > 0, consider the abelian group Xn = C (Gn+1,A) of all continuous functions

f : Gn+1 → A: since A is discrete, so is Xn with the open-compact topology, and it is

easily checked that the G-action defined by

(xf)(x0, . . . , xn) = xf(x−1x0, . . . , x−1xn)

is continuous.

We make the sequence (Xn)n>0 of G-modules into a complex by defining differentials

dn+1 : Xn → Xn+1 so that

dn+1f(x0, . . . , xn+1) = (−1)i
n+1∑
i=0

f(x0, . . . , x̂i, . . . , xn+1),

where the hat means that xi is omitted from the sequence. Also, let d0 : A → X0 be the

map a→ (x 7→ a).

Then, A→ X• is a resolution of A in G-modules, as the following lemma proves.
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Lemma 2.1.4. The sequence

A X0 X1 · · ·d0 d1 d2

is exact.

Proof. A straightforward computation shows that the above sequence is a complex. To

prove exactness, it is enough to find a contracting homotopy, i.e. maps k−1 : X0 → A and

kn : Xn+1 → Xn such that, for for n > 0,

kndn+1 + dnkn−1 = 0.

By defining k−1f = f(1) and (knf)(x0, . . . , xn) = f(1, x0, . . . , xn), the above equation is

easily verified.

Applying the fixed functor •G (see Remark 2.1.2) to the exact complex X•, we get a

complex of abelian groups, whose n-th term is the group Cn(G,A) = C (Gn+1,A)G, con-

sisting of all continuous functions f : Gn+1 → A such that xf(x0, . . . , xn) = f(xx0, . . . , xxn).

Its cohomology is

Hn(C•(G,A)) = ker(dn+1)/ im(dn)

and we call the elements of Zn(G,A) = ker(dn+1) and Bn(G,A) = im(dn) homogeneous

n-cocycles and n-coboundaries, respectively, of G with respect to A.

Definition 2.1.5. For n > 0, the n-th cohomology group Hn(G,A) of G with coefficients in

A is defined as

Hn(G,A) = Hn(C•(G,A)).

We can give a useful alternative definition ofHn(G,A) by constructing a complex C •(G,A)

as follows. Let C 0(G,A) = A and, for n > 0, set Cn(G,A) = C (Gn,A), the abelian group

of all continuous functions Gn → A; the differentials ∂n+1 : Cn(G,A) → Cn+1(G,A) are

defined as

∂n+1f(x1, . . . , xn+1) = x1f(x2, . . . , xn+1) +
n∑
i=1

(−1)if(x1, . . . , xixi+1, . . . , xn+1)

+ (−1)n+1f(x2, . . . , xn+1).

We call inhomogenous n-cocycles and n-coboundaries the elements of ker(∂n+1) and

im(∂n) respectively.

Lemma 2.1.6. The complexes C •(G,A) and C•(G,A) are isomorphic. Consequently, Hn(G,A) =

Hn(C •(G,A)) for all n > 0.
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Proof. In degree 0, the map C0(G,A)→ A given by f 7→ f(1) is an isomorphism; for n > 0,

an isomorphism ϕn : Cn(G,A)→ Cn(G,A) is given by

ϕn(f)(x1, . . . , xn) = f(1, x1, x1x2, . . . , x1 · · · xn),

with inverse ψn : Cn(G,A)→ Cn(G,A) given by

ψn(g)(x0, . . . , xn) = x0g(x−10 x1, . . . , x−1n−1xn),

An one may readily check, the above maps commute with differentials d and ∂, and the

conclusion follows.

In particular, for a ∈ A and f ∈ C (G,A),

∂1(a)(x) = xa− a,

∂2(f)(x,y) = xf(y) − f(xy) + f(x).

Therefore, ker(∂0) = AG and, if the G-action on A is trivial, im(∂1) = 0 and ker(∂2) =

Hom(G,A). By Lemma 2.1.6, this implies

Corollary 2.1.7. For a G-module A, H0(G,A) = AG. If A is a trivial G-module, H1(G,A) =

Hom(G,A).

Finally, we have an explicit description ofH2(G,A) by the topological version of Schreier’s

theorem on group extensions with abelian kernel. Consider an extension X of A by G,

i.e. an exact sequence

0 A E G 1
ϕ

where A is finite abelian and E is profinite, and choose a continuous section σ : G → E

of ϕ with σ(1) = 1. Then, writing operations in E additively, A is a G-module via the

action xa = σ(x)a = σ(x) + a− σ(x), which does not depend on σ since A is abelian.

Call two extensions X,X ′ of A by G equivalent if there is a homomorphism E → E ′

such that the diagram

0 A E G 1

0 A E ′ G 1

ϕ

ϕ ′

(2.1)

commutes (note in particular that E→ E ′ is an isomorphism). Let X(G,A) be the set

of extensions of A by G up to equivalence.

Theorem 2.1.8. There is a bijection of pointed sets

H2(G,A) ' X(G,A)

with a distinguished point in X(G,A) being the equivalence class of a semidirect product AoG.
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Proof. We only sketch the proof, showing how the maps are constructed. Consider an

extension

0 A E G 1
ϕ

of A by G, and choose a continuous section σ : G → E. For x,y ∈ G, the difference of

σ(x) + σ(y) and σ(xy) maps to 0 through ϕ, hence we may find some element f(x,y) ∈ A
such that σ(x) + σ(y) = f(x,y) + σ(xy).

One easily checks that the assignment (x,y) 7→ f(x,y) defines an inhomogenous 2-

cocycle, and that changing σ with another section induces a cocycle that differs from f

by a 2-coboundary: then X is associated to a well defined class f(X) ∈ H2(G,A). Since the

choice of a section for ϕ induces a section for ϕ ′ in diagram (2.1), by the same argument

one also proves that if X and X ′ are equivalent extensions they have the same class in

H2(G,A). We therefore get a well defined map X(G,A)→ H2(G,A).

To find an inverse, consider an inhomogenous 2-cocycle f : G2 → A representing an

element c ∈ H2(G,A). We may assume that f is normalized, that is f(x, 1) = f(1, x) = 0

for all x ∈ G. To see this, observe that f(x, 1) = xf(x, 1) and f(1, x) = f(1, 1) and consider

the 2-coboundary g = ∂2(g), where the 1-cochain g is defined as g(x) = f(1, 1). Then

g(x,y) = xf(1, 1) and f− g is a 2-cochain which still represents c and has the desidered

property.

Such a normalized cocycle induces on the set E = A×G a group structure by setting

(a, x)(b,y) = (a+ xb+ f(x,y), xy)

for a,b ∈ A and x,y ∈ G. This way, E is in fact a profinite group, and

X(f) : 0 A E G 1
ϕ ,

with the canonical embedding and projection A→ E and E→ G, is an extension of A by

G we may then associate to f. If g is another cocycle representing c, the extension X(g)

is seen to be equivalent to X(f), so that we get a well defined assignment [f] 7→ X(f) for

[f] ∈ H2(G,A). Since the two maps we defined are in fact mutually inverse, the result

follows.

Remark 2.1.9. In principle, one can define the complex C•(G,A) for any topological G-

module A and consider its cohomology. Though in this generality one does not get the

nice functorial properties we are now going to explain for the discrete case, this allows

for example to remove the finiteness assumption on A in Theorem 2.1.8.

Cohomology as a δ-functor

We now aim to prove that the cohomology groups we have just constructed give rise to

a universal δ-functor DMod(G)→ Ab, starting with their functorial properties.



2.1. Cohomology of profinite groups 25

Consider two profinite groups G,G ′ and let A,A ′ be a G-module and a G ′-module,

respectively.

Definition 2.1.10. A map ϕ : G → G ′ of profinite groups and a homomorphism f : A ′ → A of

abelian groups are compatible if f(ϕ(x)a) = xf(a) for all a ∈ A, x ∈ G,

In particular, if G = G ′ and ϕ is the identity map, this is the same as saying that f is a

G-map.

A pair (ϕ, f) of compatible morphisms induces maps Cn(G ′,A ′) → Cn(G,A), by

which an element g ∈ Cn(G ′,A ′) maps to the function

(x0, . . . , xn) 7→ f ◦ g(ϕ(x0), . . . ,ϕ(xn)).

The compatibility assumption implies the sequence of such maps is a morphism of

complexes C•(G ′,A ′)→ C•(G,A). Thus, we get induced homomorphisms

Hn(G ′,A ′)→ Hn(G,B)

for all n > 0. As an immediate consequence, we may see Cn(G, •) and Hn(G, •) as func-

tors DMod(G)→ Ab for all n > 0.

Suppose now we have limits G = lim←−Gi and A = lim−→Ai of profinite groups Gi and

Gi-modules respectively, and the limits are compatible in the sense that, for all i 6 j, the

transition maps ϕji : Gj → Gi and fij : Ai → Aj are compatible. Then A is naturally a

G-module by setting, for x = (xi) ∈ G and a = (ai) ∈ A, xa = fi(xiai), where fi : Ai → A

is the canonical map and the index i is such that fi(ai) = a.

Lemma 2.1.11. i) If G = lim←−Gi and A = lim−→Ai are compatible,

Cn(G,A) = lim−→C
n(Gi,Ai).

ii) As a functor DMod(G)→ Ab, Cn(G, •) is exact for all n > 0.

Proof. To prove (i), we may easily reduce to the case where the Gi are finite: for the

general case, write G = lim←−Gi/U as in Proposition 1.1.12 and apply the finite case to

find

Cn(G,A) = lim−→
U

Cn(Gi/U,AUi ) = lim−→
i

(
lim−→
Ui

Cn(Gi/U,AUi )

)
= lim−→C

n(Gi,Ai).

Suppose the Gi are finite: for all i, the canonical maps G → Gi and Ai → A induce

morphisms

ψk : Cn(Gi,Ai)→ Cn(G,A)
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that give rise to a map

ψ : lim−→C
n(Gi,Ai)→ Cn(G,A).

To prove that it is an isomorphism, it is enough to show that it is a bijection.

Suppose first that f ∈ lim−→C
n(Gi,Ai) maps to the zero function in Cn(G,A). Pick an

index k and a map fk ∈ Cn(Gk,Ak) such that ψk(fk) = f, and call fi the composition

Gi → Gk
fi−→ Ai → Ak for all i > k. Also, let Xi = Gn+1i \ f−1i (0), which is closed since

A is discrete. Then Xi can be naturally made into a (cofinal) inverse system, and its

inverse limit must be empty, since an element (x0, . . . , xn) ∈ lim←−Xi ⊂ G
n+1 would verify

f(x0, . . . , xn) 6= 0, contradicting f = 0. Hence, lim←−Xi = ∅ and therefore, by Lemma 1.1.1,

already fi = 0 for some i, which proves that ψ is injective.

To see surjectivity, fix f ∈ Cn(G,A) and observe that im(f) = {a1, . . . ,at} is finite since

G is compact and A is discrete; also, since f(xx0, . . . , xxn) = xf(x0, . . . , xn), f is constant on

the cosets of H =
⋂t
i=1Gai < G, which is an open subgroup of G. By Lemma 1.1.8, there

is an index k such that H > ker(ϕk), where ϕk : G → Gk is the canonical projection:

therefore f is constant on the cosets of ker(ϕk) and factors to a continuous function

Gi → A for all i > k. Also, since im(f) is finite, there is some h > k such that the

image of Ai in A via the canonical map contains im(f) for i > h: thus, we have a map

fh : Gh → Ah in lim−→C
n(Gi,Ai) such that ϕ(fh) = f, and ψ is surjective.

For assertion (ii), the case when G is finite follows by observing that

Cn(G, •) = HomZ[G](F, •),

where Z[G] is the group ring on G and F is the free Z[G]-module on the set Gn+1 (this

is clear, for the continuity assumption on elements of Cn(G,A) is vacuous if G is finite).

For the general case, (i) implies that

Cn(G,A) = lim−→
U

Cn(G/U,AU),

U running through the open normal subgroups of G, and the result follows from the

exactness of lim−→.

The identification in Lemma 2.1.11(i) is really an isomorphism of complexes

C•(G,A) = lim−→C
•(Gi,Ai),

since the isomorphisms lim−→C
n(Gi,Ai) → Cn(G,A) clearly commute with d. As an im-

mediate consequence, group cohomology commutes with limits and direct sums, as

follows.

Corollary 2.1.12. i) If G = lim←−Gi and A = lim−→Ai are compatible,

Hn(G,A) = lim−→H
n(Gi,Ai).
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ii) If A =
⊕
iAi is a direct sum of G-submodules of A,

Hn(G,A) =
⊕
i

Hn(G,Ai).

We are now able to make (Hn(G, •))n>0 into a δ-functor. Pick a short exact sequence

0→ A→ B→ C→ 0 of G-modules, and consider the commutative diagram

Cn(G,A)/Bn(G,A) Cn(G,B)/Bn(G,B) Cn(G,C)/Bn(G,C) 0

0 Zn+1(G,A) Zn+1(G,B) Zn+1(G,C)

.

By Lemma 2.1.11(ii), its rows are exact. We may therefore apply the Snake lemma to it,

and get an exact sequence

Hn(G,A) Hn(G,B) Hn(G,C) Hn+1(G,A)

Hn+1(G,B) Hn+1(G,C)

δ

where the connecting morphism δ is functorial by its construction. Arguing by induc-

tion on n, we get the wanted long exact sequence in order to obtain a δ-functor.

We are left with proving that (Hn(G, •))n>0 is universal. We need the notion of

coinduced modules.

Definition 2.1.13. Let H < G a subgroup, and A an H-module. The H-coinduced module of

A is the G-module

CoindGH(A) = {f ∈ C (G,A) | f(hx) = hf(x) for allh ∈ H, x ∈ G},

where the action of G is given by (xf)(y) = xf(x−1y).

One esily checks that the above G-action is continuous. For H = 1, we let CoindG(G,A) =

CoindG1 (G,A); note that it coincides with C (G,A).

Proposition 2.1.14. For a G-module A, Hn(G, CoindG(A)) = 0 for all n > 0.

Proof. We claim that there is an isomorphism of complexes X•(G,A) ∼−→ C•(G, CoindG(A)):

since the former is exact, the result will follow.

Such isomorphism is found by considering the maps ϕn : Xn(G,A)→ Cn(G, CoindG(A))

defined as

ϕn(f)(x0, . . . , xn)(x) = xf(x−1x0, . . . , x−1xn);

in fact, they commute with d, and are inverted by ψn : Cn(G, CoindG(A)) → Xn(G,A)

such that ψn(g)(x0, . . . , xn) = g(x0, . . . , xn)(1).
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We have a natural embedding ι : A→ CoindG(A), that sends a ∈ A to the constant map

x→ a: ι is therefore a monorphism such that Hn(G, •)(ι) = 0 for all n > 0.

This shows that Hn(G, •) is effaceable for all n > 0, and therefore (Hn(G, •))n>0 is

a universal δ-functor. We summarise the above discussion in the following result; note

that, by Corollary 2.1.7, H0(G, •) = •G.

Proposition 2.1.15. For a profinite group G, (Hn(G, •))n>0 is the sequence of right derived

functors of the fixed functor •G. In particular, H•(G, •) is a universal δ-functor.

Remark 2.1.16. It is easy to prove that DMod(G) has enough injectives, using the corre-

sponding result for abstract G-modules. As a consequence of Remark 2.1.2 and a general

theorem from homological algebra, one then knows a priori that the functor •G has a

right derived functor. Therefore, one could define Hn(G, •) = Rn•G, and then prove that

A→ X•(G,A) is a suitable resolution for the computation of such right derived functors,

getting back our definition.

2.2 Cohomology of subgroups and quotients

We now look at some special homomorphisms of cohomology groups induced by spe-

cific pairs of compatible maps, that allow us to relate the cohomology of a profinite

group G to that of its subgroups and quotients.

Restriction and Corestriction

For a subgroup H < G and a G-module A, the inclusion H → G and the identity map

A→ A induce the restriction maps

resGH : Hn(G,A)→ Hn(H,A).

At the level of cochains, resGH(f) is the restriction of f ∈ Cn(G,A) to Hn+1; in particular, in

degree 0, resGH is the inclusion AG ⊂ AH. Remark that the sequence of restrictions maps

in degree n for n > 0 induces a morphism of δ-functors (Hn(G, •))n → (Hn(H,A))n.

For open subgroups of G, we get a map in the opposite direction as follows. Let

H < G be open and fix a transversal T of H in G. Define the norm NG/H : AH → AG as

NG/H(a) =
∑
x∈T

xa;

note that T is finite by assumption, and the definition does not depend on the choice

of T since a is fixed by H. We define the corestriction corHG as the unique morphism of

δ-functors (Hn(H, •))n → (Hn(G, •))n that coincides with NG/H in degree 0.
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Lemma 2.2.1. Let K < H < G.

i) resHK resGH = resGK .

ii) If K,H are open, corHG corKH = corKG.

Proof. The equalities are clear in degree 0, and this suffices, since both left and right

hand sides are morphisms of universal δ-functors.

Proposition 2.2.2. Suppose H < G is open. Then

corHG resGH = [G : H].

Proof. Again, we can reduce to check this in degree 0, where the composite map AG →
AH → AG is NG/H(a) for a ∈ AG. Since G acts trivially on A, NG/H(a) = [G : H]a.

We may now prove that cohomology groups are always torsion groups, and look at

some consequences.

Proposition 2.2.3. For all n > 0, Hn(G,A) is a torsion group and the order of an element

c ∈ Hn(G,A) divides #G.

Proof. By Corollary 2.1.12, we may write Hn(G,A) = lim−→UH
n(G/U,AU) where, as usual,

the U are normal open subgroups in G; thus, since it is preserved by taking this limit,

it suffices to prove the wanted property assuming that G is finite. In this case, 1 < G is

open, and Proposition 2.2.2 implies

|G|Hn(G,A) = cor1G resG1 H
n(G,A) = cor1GH

n(1,A) = 0,

hence the result.

For a torsion abelian group A, let Ap be its p-primary part, i.e. the subgroup of p-torsion

elements. An immediate consequence of Proposition 2.2.3 is

Corollary 2.2.4. Let A be a G-module. Then

i) Hn(G,A) =
⊕
p

Hn(G,A)p;

ii) if A is torsion, Hn(G,A) =
⊕
pH

n(G,Ap).

Proposition 2.2.5. Suppose H < G is such that p - [G : H]. Then the restriction

resGH : Hn(G,A)p → Hn(H,A)

is injective. If H is open, the corestriction

corHG : Hn(H,A)p → Hn(G,A)

is surjective.
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Proof. We prove the statement about restriction; the other one is analogous. Write H =⋂
U = lim←−U, where U ranges the open subgroups of G containing H. Then Hn(H,A) =

lim−→UH
n(U,A), and the transition maps Hn(U,A) → Hn(U ′,A) for U ′ < U are precisely

the restrictions. Suppose resGH(c) = 0 for some c ∈ Hn(G,A)p: by Proposition 1.1.12,

resGU(c) = 0 for some open subgroup U > H. Since U is open,

0 = corUG resGU(c) = [G : H]c,

a which implies c = 0 for c is p-torsion and p - [G : H].

Corollary 2.2.6. For each prime p, let Gp be a p-Sylow of G. If Hn(Gp,A) = 0 for all p, then

Hn(G,A) = 0.

Proof. The restriction res : Hn(G,A)p → Hn(Gp,A) is the zero map. By Proposition 2.2.5,

Hn(G,A)p = 0, and Corollary 2.2.4 concludes.

We are now able to prove the profinite version of Shapiro’s lemma. We need a prelimi-

nary result, whose proof goes exactly like the one of Lemma 2.1.11.

Lemma 2.2.7. i) If H < G and A is an H-module,

CoindGH(A) = lim−→CoindG/U
HU/U

(AU).

ii) As a functor DMod(H)→ DMod(G), CoindGH(•) is exact.

Proposition 2.2.8 (Shapiro’s lemma). Let H < G a subgroup and A an H-module. We have

natural isomorphisms

Hn(G, CoindGH(A)) ' Hn(H,A)

for all n > 0.

Proof. Consider the canonical map µ : CoindGH(A) → A such that µ(f) = f(1). Since

CoindGH(•) is exact by Lemma 2.2.7, (Hn(G, CoindGH(•)))n>0 is a universal δ-functor. The

composition

Hn(G, CoindGH(A)) Hn(H, CoindGH(A)) Hn(H,A),res

where the right map is induced by µ, induces a morphism of universal δ-functors

(Hn(G, CoindGH(•)))n → (Hn(H, •))n.

It suffices to prove that it is an isomorphism in dimension 0: in this case, it reduces to

the map sending f ∈
(

CoindGH(A)
)G

to f(1) ∈ AH, and is inverted by the map sending

a ∈ AH to the constant function x 7→ a in
(

CoindGH(A)
)G

.
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Inflation

The last special morphism of cohomology groups we need to look at is the inflation map.

For a normal subgroup K < G define

infG/KG : Hn(G/K,AK)→ Hn(G,A)

as the homomorphism induced by the projection G → G/K and the inclusion AK → A

(recall that AK is in fact a G/K-module by Remark 2.1.2). In degree zero, inf : (AK)G/K →
AG is the identity map, while a cocycle f ∈ Cn(G/K,AK) is lifted by infG/KG to g ∈
Cn(G,A) defined by g(x0, . . . , xn) = f(x0K, . . . , xnK).

Again, remark that inflation is a morphism of δ-functors (Hn(G/K, •K))n → (Hn(G,A))n,

and therefore the following multiplicativity result is obvious.

Proposition 2.2.9. Suppose K ′ < K < G are normal subgroups. Then infG/K
′

G infG/K
G/K ′ =

infG/KG .

We shall need a different interpretation of the inflation map when n = 2 in terms of

group extensions. Suppose we have a diagram

G

X : 0 A E G 1

ψ

ϕ

where the lower row is an extension of A by G in the sense of Theorem 2.1.8, and the

map ψ : G→ G is an epimorphism. Then we may consider the pullback extension

Y : 0 A A×G G G 1

where A×G G = {(a, x) ∈ A×G | ϕ(a) = ψ(x)} is the fibre product of A×G over G. Note

that it fits in the commutative diagram

0 A A×G G G 1

0 A E G 1

ψ

ϕ

via the canonical embedding of A and projections on A ⊂ E and G. The choice of a

continuous section σ for ϕ induces a section G → A×G G of the projection defined by

x 7→ (σ(ϕ(x)), x). Observe that the G-module structure that A inherits via this section is

the same as the one induced by ψ, namely xa = ψ(x)a for x ∈ G.

Now we look at the cohomology classes associated to X and Y via the described

sections (see the proof of Theorem 2.1.8): the class cX ∈ H2(G,A) of X is represented by

the inhomogenous cocycle

f(x,y) = σ(x) + σ(y) − σ(xy)
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for x,y ∈ G, while the class cY ∈ H2(G,A) of Y is represented by

g(x,y) = (σ(ϕ(x)) + σ(ϕ(y)) − σ(ϕ(xy)), 1)

for x,y ∈ G, which corresponds to

σ(ϕ(x)) + σ(ϕ(y)) − σ(ϕ(xy)) = f(ϕ(x),ϕ(y))

via the projection A×GG→ E. But f(ϕ(x),ϕ(y)) is precisely the cocycle representing the

class of inf(cX) through the inflation map H2(G,A) → H2(G,A), whence cY = inf(cX).

Summarising,

Proposition 2.2.10. For an epimorphism ψ : G→ G of profinite groups, and an extension

X : 0→ A→ E
ϕ−→ G→ 1

of a finite abelian group A by G whose corresponding cohomology class is c ∈ H2(G,A), inf(c) ∈
H2(G,A) corresponds to the pullback extension

0→ A→ A×G G→ G→ 1.

2.3 Cohomological dimension

As the last cohomological ingredient we need, we look at a fundamental invariant for

profinite groups.

Definition 2.3.1. For a prime p, the p-cohomological dimension cdp(G) of a profinite group

G is the smallest integer n > 0, if it exists, such that Hk(G,A)p = 0 for all k > n and all torsion

G-modules A. Otherwise, we set cdp(G) =∞ if such an integer does not exist.

We let cd(G) = supp cdp(G) and call it the cohomological dimension of G.

Remark 2.3.2. i) By Corollary 2.2.4, cd(G) is either ∞ or the minimum integer n > 0

such that Hk(G,A) = 0 for all k > n and all torsion G-module A.

ii) If we remove the hypothesis that A be torsion, we get the definition of p-strict

cohomological dimension scdp(G), which is related to cdp(G) by the inequalities

cdp(G) 6 scdp(G) 6 cdp(G) + 1 (see [Ser97], Proposition 13 for a proof).

First of all, we want to minimize the set of G-modules that we have to check in

order to compute cohomological dimension. A G-module A is called simple if it has no

nontrivial G-submodule.
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Remark 2.3.3. Since the orbit of an element a ∈ A under the action of G is finite, a

simple G-module is always a finitely generated abelian group. Consequently, there

exists a prime p such that the p-multiplication A p−→ A is not surjective. Then pA = 0 by

simplicity of A, so that A is in fact finite and such a p is unique.

Proposition 2.3.4. For a profinite group G, cdp(G) 6 n if and only if Hn+1(G,A) = 0 for all

simple p-primary G-modules A.

Proof. One implication is clear. For the nontrivial one, assume Hn+1(G,A) = 0 whenever

A is simple p-primary and consider first a nontrivial simple submodule A ′ of a (non

simple) finite p-primary G-module A. The short exact sequence

0→ A ′ → A→ A/A ′ → 0

induces the long exact sequence

· · · → Hn+1(G,A ′)→ Hn+1(G,A)→ Hn+1(G,A/A ′)→ · · ·

Assuming inductively that Hn+1(G,B) = 0 if |B| < |A|, we get that both Hn+1(G,A ′) and

Hn+1(G,A/A ′) are zero, hence also Hn+1(G,A) = 0.

For a general torsion module A, we can write Ap as the direct limit of its finite

G-submodules B, and therefore we have

Hn+1(G,A)p = Hn+1(G,Ap) = lim−→
B

Hn+1(G,B) = 0

by Corollaries 2.1.12 and 2.2.4.

To extend the result to arbitrary degrees k > n, we argue by dimension shifting:

namely, consider the short exact sequence

0→ A
ι−→ CoindG(A)→ coker(ι)→ 0;

applying Proposition 2.1.14 to the induced long exact sequence in cohomology and

arguing by induction, we get Hk+1(G,A) ' Hk(G, coker(ι)) = 0.

The situation is particularly easy when G is a pro-p-group.

Proposition 2.3.5. If G is a pro-p-group, the only simple p-primary G-module is Z/pZ (with

the trivial action of G).

Proof. Let A be a simple p-primary G module. Then A must be finite and in fact el-

ementary abelian by Remark 2.3.3. Thus, the intersection of stabilizers U =
⋂
a∈AGa

is an open subgroup of G, and so is its core UG. Therefore, viewing A as a simple

G/UG-module, we may assume G to be finite.
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We then claim that the action of G must be trivial. Otherwise, AG = 0 because A

is simple and AG 6= A, so that all nonzero elements of A lie in an orbit of the G-action

whose cardinality is divisible by p: this gives |A| ≡ 1 (mod p), a contradiction since A is

a finite p-group. Consequently, A must be a simple finite p-group, and thus isomorphic

to Z/pZ.

Corollary 2.3.6. For a pro-p-group G, cd(G) 6 n if and only if Hn+1(G, Z/pZ) = 0.

We have the following result about cohomological dimension of subgroups.

Theorem 2.3.7. For a subgroup H < G, cdp(H) 6 cdp(G). Equality holds in the following

cases:

i) if p - [G : H];

ii) if cdp(G) <∞ and p∞ - [G : H].

Proof. The inequality follows from Shapiro’s lemma (see Proposition 2.2.8): if k > cdp(G),

and A is a torsion G-module, so is CoindGH(A), whence

Hk(H,A)p = Hk(G, CoindGH(A))p = 0.

Now, if (i) holds, the restriction resGH : Hk(G,A)p → Hk(H,A)p is injective by Proposition

2.2.5. Thus, if Hk(H,A)p = 0, so is Hk(G,A)p.

Assuming (ii), we first suppose H < G is open. Let n = cdp(G) and choose a torsion

G-module A such that Hn(G,A)p 6= 0. If T is a (finite) transversal of H in G, the map

π : CoindGH(A) → A defined by π(f) =
∑
t∈T t

−1f(t) is a G-homomorphic section of the

canonical embedding ι : A→ CoindGH(A), and is therefore surjective.

The short exact sequence

0→ ker(π)→ CoindGH(A)
π−→ A→ 0

induces the exact sequence

Hn(G, CoindGH(A))p → Hn(G,A)p → Hn+1(G, ker(π)) = 0,

so that the first map is surjective and Hn(G, CoindGH(A))p = Hn(H,A)p 6= 0.
For the general case, suppose pt divides exactly [G : H], where t is finite by hy-

pothesis, and choose p-Sylows Hp,Gp of H,G respectively in such a way that Hp < Gp.

Since

[GpU/U : HpU/U] 6 p
t

for all open normal subgroups U < G, [Gp : Hp] = ps < ∞ for some finite s. Then, by

the previous case, cdp(Gp) = cdp(Hp), and by (i) they are equal to cdp(G) and cdp(H)

respectively.
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Corollary 2.3.8. Let Gp be a p-Sylow of a profinite group G. Then cdp(G) = cdp(Gp).

Corollary 2.3.9. For a profinite group G,

i) cdp(G) = 0 if and only if p - #G;

ii) if cdp(G) 6= 0,∞, then p∞ | #G.

Proof. For (i), we may suppose that G is a pro-p-group; then obviously cdp(G) = cdp(1) =

0 if p - #G. Conversely, suppose cdp(G) = 0: considering Z/pZ as a trivial G-module, we

get

H1(G, Z/pZ) = Hom(G, Z/pZ) = 0,

which necessarily implies G = 1.

Statement (ii) follows from Theorem 2.3.7: if p∞ - #G and cdp(G) is finite, we have

0 = cdp(1) = cdp(G).

As a consequence, p-cohomological dimension is a rather sloppy invariant for finite

groups G, since it is either ∞ or 0 according to whether p does or does not divide |G|.

We shall see in a while that, for infinite G, this is not the case.
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Chapter 3

Strong Embedding Problems

We shall now begin the study of our main topic of interest: embedding problems.

Definition 3.0.1. Let G be a profinite group. An embedding problem for G is a diagram of

profinite groups

G

1 K A B 1

ϕ

α

(3.1)

where the row is exact, i.e. A is an extension of B by K, and ϕ is a surjective map.

A (weak) solution to an embedding problem (3.1) is a map ϕ : G → A lifting ϕ, i.e. such

that α ◦ϕ = ϕ. We say that a solution is strong (or proper) if it is surjective, and an embedding

problem is solvable (resp. strongly solvable) if it admits a solution (resp. a strong solution).

Embedding problems (as well as their name) originate in Galois theory, and give

a generalization of the inverse Galois problem. Let E ⊃ F ⊃ k be a tower of Galois

extensions of k, and let G,B be the Galois groups of E, F over k respectively. Then there

is a natural projection map ϕ : G→ B induced by the restriction of k-automorphisms of

E to k-automorphisms of F.

If α : A → B is a surjective map of profinite groups, the problem of finding an

intermediate extension E ⊃ M ⊃ F ⊃ k such that G(M |k) = A and the projection map

G(M |k)→ G(F |k) is exactly α is solved (via Galois correspondence) precisely when the

corresponding embedding problem for G has a strong solution.

As we shall see, though, embedding problems prove a useful tool already in the con-

text of profinite group theory per se: our main result, in this chapter, will be the char-

acterization of free pro-c-groups (wich we are now going to introduce) for full classes

c of finite groups, via the existence of strong solutions to a specific class of embedding

problems.
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3.1 Free pro-c-groups

Recall that a sequence (xi | i ∈ I) of elements a profinite group G converges to 1 if any

open subgroup U < G contains almost all (i.e. all but finitely many) elements xi. Also, a

map µ : X→ G converges to 1 if (µ(x) | x ∈ X) converges to 1 in G.

Throughout this section, c will be a fixed class of finite groups closed under taking

subgroups, quotients and finite direct products.

Definition 3.1.1. Let X be a set. A free pro-c-group over X is a pro-c-group F together with a

map ι : X→ F such that

i) ι converges to 1;

ii) if G is a pro-c-group, and µ : X → G is a map converging to 1, there exists a unique map

ϕ : F→ G such that ϕ ◦ ι = µ.

Observe that ι(X) is a set of generators converging to 1 for the free pro-c-group on X.

Also, one may verify that property (ii) holds by checking it in the case when G is a finite

c-group.

Proposition 3.1.2. For each set X, there exists a free pro-c-group F on X. Moreover, F is deter-

mined up to unique isomorphism.

Proof. Take F0 to be the abstract free group on the set X, with ι0 : X→ F0 the immersion of

X in F0 as a basis, and let F = lim←−U F0/U, where U varies through the normal finite index

subgroups of F0 containing almost all elements of X and such that F0/U is a c-group. Let

ι be the map X→ F induced by the natural projections

πU : X
ι0−→ F0 → F0/U,

which evidently converges to 1, since for all U as above there is only a finite number of

elements x ∈ X such that πU(x) 6= 0.
If G is a pro-c-group, and µ : X → G converges to 1, it induces a homomorphism

ϕ0 : F0 → G such that ϕ0 ◦ ι0 = µ by the universal property of F0. If V varies through the

open normal subgroups of G then, the subgroups ϕ−1
0 (V) are such that F0/ϕ−1

0 (V) is a

c-group, and contain almost all elements of X, and the maps

F0/ϕ
−1
0 (V)→ G/V

induced by ϕ0 yield in turn a continuous homomorphism

ϕ : F→ lim←−
V

F0/ϕ
−1
0 (V)→ lim←−

V

G/V = G,
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which verifies ϕ ◦ ι = µ by construction. Also, ϕ is clearly unique, since ι(X) generates

F. We therefore established existence for F.

Uniqueness follows from a standard argument. Namely, given a diagram

F F ′

X

ι ι ′

with F, F ′ free pro-c-groups on X, by the universal property of F, F ′ we get unique maps

ϕ : F → F ′,ψ : F ′ → F making the triangle commute. By the uniqueness property, it is

straightforward to see that ψ ◦ϕ,ϕ ◦ψ are the identities of F, F ′ respectively.

We write Fc(X) to refer to the free pro-c-group on the set X. The following corollary is

immediate from the above construction (see Remark 1.2.2).

Corollary 3.1.3. Let X be a finite set. Then, Fc(X) is uniquely characterized as the pro-c-

completion of the abstract free group on X.

Proposition 3.1.4. Let (F, ι) be a free pro-c-group on the set X.

i) The set ι(X) does not contain 1, and ι is injective.

ii) |X| = d(F).

Proof. Let C = 〈a〉 be a cyclic c-group, and fix x ∈ X. Then the homomorphism F → C

induced by the assignment x 7→ a,X \ {x} 7→ 1 must be surjective, and therefore ι(x) 6= 1.

If X has more than one element, take G = 〈a,b〉 a 2-generated c-group, and let x 7→
a,y 7→ b,X \ {x,y} 7→ 1: then we must have ι(x) 6= ι(y), since the induced map is an

epimorphism. This proves (i).

Statement (ii) follows from Proposition 1.3.4 if d(F) > ℵ0. Otherwise, let d(F) = n

finite, and fix a subset {x1, . . . , xn} ⊂ X (note |X| > d(F)). Let Y = {y1, . . . yn} be a system

of generators converging to 1 for F and define µ : X → F by the assignment xi 7→ yi and

x 7→ 1 for x 6= xi. Then µ extends to a map ϕ : F → F, which is surjective since the yi
generate F. By Proposition 1.3.11, ϕ is then an isomorphism, and therefore X\ {x1, . . . , xn}

must be empty by (i).

Due to the above Proposition, we may always see a set X as a subset of the free pro-

c-group F on X, and we call it a basis for F. Also, the cardinality of a base for F is

independent of its choice, and equals d(F); we shall refer to it as the rank of F.

It is evident that two free pro-c-groups of the same rank are isomorphic, an iso-

morphism being induced by a bijection between two of their bases. Therefore, if κ is

a cardinal, we shall use the notation Fc(κ) to refer to the (isomorphism class of the)
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free pro-c-group of rank κ. In particular, the free pro-c-group of countable rank will be

denoted by Fc(ω).

Examples 3.1.5. i) If f is the class of all finite groups, Ff(1) = Ẑ. More generally, if π is

a set of primes, the free pro-π-group of rank 1 is Zπ =
∏
p∈π Zp. These statements

both follow immediately from Corollary 3.1.3. Also, since all the quotients of Z

are, say, abelian, or solvable, Ẑ is the free proabelian, or prosolvable, group of rank

1 as well.

ii) The free proabelian group on a set X is the direct product
∏
x∈X Ẑ, with ι(x) being

the sequence with 1 in the position corresponding to x ∈ X and 0 everywhere else.

This follows from the fact that, if a map µ : X → A to a finite abelian group

converges to 1, µ(x) = 0 for almost all x ∈ X since A is discrete; if Y = {x ∈ X | µ(x) 6=
0}, µ is then easily extended to the finite product Ẑ×Y , and may instead be defined

as the zero map on Ẑ×X\Y .

iii) In general, one may define a suitable concept of free pro-c product, by reasonably

modifying the universal property for abstract free products. It is then fairly easy

to verify that, if X is a finite set, Fc(X) is the free pro-c product of |X| copies of Zĉ,

the pro-c completion of Z.

Remark 3.1.6. A natural way to define free pro-c-groups is as the free objects in the

category of pro-c-groups, with respect to the forgetful functor taking values in the cate-

gory of profinite spaces; explicitly, this gives a pro-c-group F with a continuous function

ι : X → F from a profinite space X such that, for any continuous function µ : X → G to a

pro-c-group, there exists a unique map ϕ : F→ G such that the diagram

F G

X

ϕ

ι
µ

commutes. A similar definition can be given considering pointed profinite spaces.

Then, one may easily see that Fc(X), where X is a set, is in fact a free pro-c-group on a

pointed profinite space (X̃, ?): namely, X̃ is the Alexandrov compactification of X seen as

a discrete space, ? being the adjoined point (X̃ is in fact a profinite space, being compact,

Hausdorff and totally disconnected).

Moreover, using the characterization of free pro-c-groups on a set that we shall prove

in the next section, one may also show (see [RZ10], Proposition 3.5.12) that every free

pro-c-group on a pointed space is also a free pro-c-group according to Definition 3.1.1.

Proposition 3.1.7. Every pro-c-group is a quotient of a free pro-c-group.
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Proof. Let G be a pro-c-group, and pick a set X of generators converging to 1 for G. Let

F be the free pro-c-group on the set X: the inclusion map X → G converges to 1, and

therefore induces a surjective map F → G. In particular, notice that we may choose

d(F) = d(G).

3.2 Characterization of free pro-c-groups

In the current section, c will always denote a full class of finite groups. We aim to

characterise free pro-c-groups in terms of strong embedding problems.

We deal with the finitely generated case first.

Lemma 3.2.1. Let ϕ : G → H be an epimorphism of profinite groups with d(G) 6 n finite,

and suppose H = 〈h1, . . . ,hn〉. There exist g1, . . . ,gn ∈ G such that ϕ(gi) = hi and G =

〈g1, . . . ,gn〉.

Proof. Assume G finite first. For a subgroup L < G and a n-uple h = (h1, . . . ,hn) ∈ Hn,

let tL(h) be the number of n-uples (g1, . . . ,gn) such that 〈g1, . . . ,gn〉 = L and ϕ(gi) = hi.

Then,

tG(h) = |ker(ϕ)|n −
∑

tL(h),

with L ranging through the proper subgroups of G such that ϕ(L) = H. Since G has a set

of n generators, there exists h ∈ Hn such that tG(h) > 0. It thereby suffices to prove that

tG(h) is independent of the choice of h, which can be seen by assuming inductively that

tL(h) does not depend on h for every surjection L → H such that |L| < |G| and using the

above formula for tG(h).

For the general case, consider the epimorphisms ϕU : G/U → H/ϕ(U) for U < G

open normal and observe that ϕ = lim←−UϕU. If we let hU ∈ H/ϕ(U) the image of h ∈ H
via the projection H→ H/ϕ(U), we then have H/ϕ(U) = 〈hU1 , . . . ,hUn 〉 for all U. Also, the

sets XU of n-uples (g1, . . . ,gn) ∈ G/U such that ϕU(gi) = hUi and 〈g1, . . . ,gn〉 = G/U are

nonempty by the finite case. Therefore, an element (g1, . . . ,gn) ∈ lim←−XU 6= ∅ gives the

wanted n-uple.

Theorem 3.2.2. Let G be a pro-c-group with d(G) = n finite. Then, G is a free pro-c-group

if and only if any embedding problem (3.1) of pro-c-groups with d(A), d(B) 6 n is strongly

solvable.

Proof. If G is free over {x1, . . . , xn}, and B = 〈b1, . . . ,bn〉, choose a1, . . . ,an such that

A = 〈a1, . . . ,an〉 and α(ai) = bi. The map G → A induced by the assignment xi 7→ ai is

then a strong solution to the given embedding problem.
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Conversely, let F = Fc(n) and choose an epimorphism F→ G. The identity of G then

lifts to an isomorphism G
∼−→ F.

The infinitely generated case is more involved. We begin with a definition.

Definition 3.2.3. If G is a pro-c-group, we say that G has the strong lifting property (SLP) if

any embedding problem

G

1 K A B 1

ϕ

α

of pro-c-groups such that w0(A) 6 w0(G), w0(B) < w0(G) is strongly solvable.

Notice that the hypoteses on the local weight of A and B are necessary to make the

definition non vacuous: since we wish for an epimorphism ϕ : G → A we surely need

w0(A) 6 w0(G); also, if we allowed w0(B) = w0(G) we would get a surjective lift of

the identity of G, and therefore an isomorphism, for any epimorphism ϕ : A → G,

which is clearly not possible. We shall therefore name admissible an embedding problem

satisfying the above conditions.

Our goal is to prove that, if d(G) > ℵ0, G has the SLP if and only if it is a free

pro-c-group. The first step is a reduction on the class of problems to check.

Lemma 3.2.4. Let G be a pro-c-group, and suppose that an admissible embedding problem for G

is solvable whenever K is a finite minimal normal subgroup of A. Then, G has the SLP.

Proof. Consider an admissible embedding problem of pro-c-groups

G

1 K A B 1

ϕ

α

and take a chain

K = K0 > K1 > · · · > Kµ = 1

as in Corollary 1.3.9.

For all λ 6 µ, we have an induced embedding problem

G

1 K A B 1

1 K/Kλ A/Kλ B 1

ϕ

α
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and it is enough to show, by induction, that the induced problem has a strong solution

ϕλ : G → A/Kλ which is compatible with the already constructed solutions for ν < λ,

that is the triangle
G

A/Kλ A/Kν

ϕνϕλ

is commutative. This is clear for λ = 0.

If λ = ν+ 1, the problem

G

1 Kν/Kλ A/Kλ A/Kν 1

ϕλ

α

is admissible: this follows by condition (iii) on the chain if K is infinite while, if K

is finite, we must have w0(A) = w0(B) < w0(G). Since Kν/Kλ is finite and minimal

normal in A/Kλ, it has a strong solution ϕλ, satisfying the compatibility condition by

construction.

Finally, if λ is a limit, then Kλ =
⋂
ν<λ Kν. Therefore, K/Kλ = lim←−ν<λ K/Kν, and ϕλ

can be taken as the inverse limit of maps ϕν.

Proposition 3.2.5. If F is a free pro-c-group of infinite rank, F has the SLP.

Proof. Consider an admissible embedding problem

F

1 K A B 1

ϕ

α

where we may assume K finite by the previous lemma, and let X be a basis for F.

We claim that, if H = ker(ϕ), |X ∩ H| is infinite. In fact, let U = {Ui | i ∈ I} be

a fundamental system of neighbourhoods of 1 made of open normal subgroups of B.

Recall that
⋂
iUi = 1, so that

|X \H| =

∣∣∣∣∣X \ϕ−1

(⋂
i

Ui

)∣∣∣∣∣ =
∣∣∣∣∣⋃
i

X \ϕ−1 (Ui)

∣∣∣∣∣ .
Since X converges to 1, X \ϕ−1(Ui) is finite for all i, and therefore |X \H| = |U|, which is

strictly smaller than |X| since w0(B) < w0(F). Hence, |X∩H| = |X| is infinite.

Now, to get a strong solution for the above problem, it is enough to construct a map

µ : X → A convergent to 1 such that µ(X) generates A. To do so, choose a bijection

ψ : Y → K, where Y is a (finite) subset of X∩H, ad let σ : B → A be a continuous section
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of α. Then, the map µ : X→ A, defined piecewise as ψ on Y and as the composition σ ◦ϕ
on X \ Y, converges to 1 as X does and σ ◦ϕ is continuous; also, since ϕ is surjective and

A = K · σ(B), µ(X) generates A.

Theorem 3.2.6. Let G be a pro-c-group with d(G) = κ > ℵ0. Then G has the the SLP if and

only if G is a free pro-c-group of rank κ.

Proof. One implication is the above proposition. For the converse, let F ' Fc(κ), and

choose chains

F = F0 > F1 > · · · > Fκ = 1

G = G0 > G1 > · · · > Gκ = 1

for F,G respectively in such a way that their quotients are c-groups and, for all λ < κ,

w0(G/Gλ) < w0(G), w0(F/Fλ) < w0(F); also, if λ is a limit, we assume Fλ =
⋂
ν<λ Fν,Gλ =⋂

ν<λGν.

We build inductively new chains

F = F ′0 > F
′
1 > · · · > F ′κ = 1

G = G ′0 > G
′
1 > · · · > G ′κ = 1

so that in addition, for all λ 6 κ,

i) F ′λ < Fλ,G ′λ < Gλ and w0(F/F
′
λ) 6 w0(F/Fλ), w0(G/G

′
λ) 6 w0(G/Gλ);

ii) there exist compatible isomorphisms ϕλ : F/Fλ → G/Gλ, i.e. such that, for all ν < λ,

the diagram

F/Fλ G/Gλ

F/Fν G/Gν

ϕλ

ϕν

commutes.

We set ϕ0 the zero map.

If λ = ν+ 1, let H = Fλ ∩ F ′ν,K = Gλ ∩G ′ν. The problem

G

F/H F/F ′ν G/G ′ν
ϕν

is admissible by (i), and since H has finite index in F ′ν: then, by the SLP of G, it has a

strong solution, say ψ : G→ F/H.
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Set G ′λ = K ∩ ker(ψ), and let ψ : G/G ′λ → F/H be the epimorphism induced by ψ. By

Proposition 3.2.5, the admissible problem

F

G/G ′λ F/H
ψ

has a strong solution η : F→ G/G ′λ.

If F ′λ = ker(η), η induces an isomorphism ϕλ : F/F ′λ → G/G ′λ, compatible by construc-

tion. Also, as one may easily see, F ′λ and G ′λ satisfy condition (i).

Finally, if λ is a limit ordinal, let F ′λ =
⋂
ν<λ F

′
ν,G ′λ =

⋂
ν<λG

′
ν, so that F/F ′λ =

lim←−ν<λ F/F
′
ν and

w0(F/F
′
λ) 6

∑
ν<λ

w0(F/F
′
ν) 6

∑
ν<λ

w0(F/Fν) = w0(F/Fλ),

with G/G ′λ behaving analogously. We may then set ϕλ = lim←−ν<λϕν, and the proof is

complete.

The above characterization of free pro-c-groups is a generalization to arbitrary rank of

the following result of K. Iwasawa (see [Iwa53]), which covers the case where the rank

of G is countable. We shall return to this theorem when we prove an application of it,

again due to Iwasawa, to the arithmetic theory of global fields.

Theorem 3.2.7 (Iwasawa). If G is a pro-c-group with d(G) 6 ℵ0, every embedding problem

G

1 K A B 1

ϕ

α

with A finite is strongly solvable if and only if G ' Fc(ω).

Proof. By Theorem 3.2.6, G ' Fc(ω) if and only if every embedding problem with

w0(A) 6 ℵ0 and finite w0(B) has a strong solution. Now, w0(B) < ℵ0 if and only if

B is finite, and by Lemma 3.2.4 we may assume K to be finite. Therefore, we may reduce

to the case when A finite as well, and the result follows.
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Chapter 4

Weak Embedding Problems and

Iwasawa’s Theorem

We now turn to weak embedding problems: through them, we shall obtain a charac-

terization of pro-c-groups G such that cd(G) 6 1, with c a full class of finite groups,

and see that they are precisely projective pro-c-groups. Moreover, in the case when c is

the class of all finite p-groups, we shall enstablish equality between projective and free

pro-p-groups.

Finally, in the last section, we shall prove an arithmetic application, due to K. Iwa-

sawa, of the characterizations we found using both strong and weak embedding prob-

lems.

In what follows, we assume that c is a full class of finite groups.

4.1 Cohomological characterization of projective pro-c-groups

A pro-c-group G is said to be c-projective if it is a projective object in the category of pro-

c-groups, i.e. the functor Hom(G, ·) preserves epimorphisms of pro-c-groups. Explicitly,

if A,B are pro-c-groups and α : A→ B is a surjective map, every map ϕ : G→ B lifts to a

continuous homomorphism ψ : G→ A such that α ◦ψ = ϕ.

To check the above condition, we may in fact restrict to verify that, for any choice of

a surjection α : A → B of pro-c-groups, any epimorphism G → B lifts to a map G → A.
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Indeed, if this is the case, the diagram

G

α−1(im(ϕ)) im(ϕ)

A B

ϕ
ψ

α

where ψ exists by hypotesis and the square is commutative, shows that any map ϕ :

G→ B lifts to a map G→ A. Therefore, we get the

Lemma 4.1.1. A pro-c-group G is c-projective if and only if any embedding problem

G

1 K A B 1

ϕ

α

of pro-c-groups is weakly solvable.

This motivates the following generalization of c-projectivity to arbitrary profinite groups.

Definition 4.1.2. A profinite group G is c-projective if every embedding problem

G

1 K A B 1

ϕ

α

(4.1)

where K is a pro-c-group is weakly solvable.

If c is the class of all finite groups, we say that G is projective. Also, if c = c(π) is the

class of all π-groups for some set of primes π, we say that G is π-projective.

Remark 4.1.3. A first example of c-projective pro-c-groups is given by free pro-c-groups.

This comes immediately from their definition: if F is a free pro-c-group on the set X, and

F

1 K A B 1

ϕ

α

is an embedding problem of pro-c-groups, choose a continuous section σ : B → A. The

composition σ ◦ϕ|X then induces a (weak) solution to the above problem.

Moreover, it is easily seen that every projective pro-c-group G embeds in a free pro-c-

group: just consider an epimorphism F→ G from a free pro-c-group and lift the identity

of G to an embedding G→ F using c-projectivity of G.
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The following result is an analogous version of Lemma 3.2.4 for weak solvability.

Proposition 4.1.4. A profinite group G is c-projective if and only if every embedding problem

(4.1) where A is finite and K is an abelian c-group is weakly solvable.

We need a preliminary basic lemma.

Lemma 4.1.5. Let A be a profinite group, and K,U be normal subgroups of A. Then the diagram

A/K∩U A/K

A/U A/UK

is cartesian, i.e. A/K∩U is isomorphic to the fibre product A/K×A/UK A/U.

Proof. The natural map A/K∩U→ A/K×A/UKA/U given by aK∩U 7→ (aK,aU) is clearly

well defined and injective. Also, if (bK, cU) ∈ A/K×A/U is such that bUK = cUK, then

bc−1 = ku for some k ∈ K and u ∈ U. Therefore, the element a = k−1b = uc is such that

aK∩U 7→ (bK, cU), whence surjectivity.

We now turn to the proof of the above proposition.

Proof (of Proposition 4.1.4). First, we show that we may reduce to asking that embedding

problems be solvable whenever K is a c-group.

If that is the case, choose an embedding problem (4.1) with K a pro-c-group. Consider

the set of pairs (N,ψ), where N is a normal subgroup of A contained in K and ψ : G →
A/N is a solution to the induced embedding problem

G

1 K/N A/N B 1

ϕ

α

ordered by (N,ψ) 6 (N ′,ψ ′) if N ′ < N and ψ ′ lifts ψ. This set is non-empty, and an

ascending chain of pairs (Nλ,ψλ) is bounded from above by the pair (
⋂
λNλ,ψ), where

ψ is the inverse limit of maps ψλ, since A/
⋂
λNλ = lim←−λA/Nλ: by Zorn’s lemma, there

exists a maximal element (N,ψ); we are to show that N = 1.

Suppose this is not the case, and choose an open normal subgroup U < A such that

N ′ = U ∩N � N; then N ′ is open in N. If Ã/N ′ is the preimage of im(ψ) in A/N ′, the

problem
G

1 N/N ′ Ã/N ′ im(ψ) 1

ψ
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has a solution ψ̃, since N/N ′ is a c-group. Consequently, the diagram

G

1 N/N ′ Ã/N ′ im(ψ) 1

1 N/N ′ A/N ′ A/N 1

ψ
ψ̃

shows the existence of a map ψ ′ : G → A/N ′ such that the pair (N ′,ψ ′) is strictly larger

than (N,ψ), a contradiction.

Now, we show that we may also assume A to be finite. Suppose that any embedding

problem with A finite and K a c-group is weakly solvable, and consider an embedding

problem (4.1) such that K is a c-group. Pick an open normal subgroup U < A such that

U∩K = 1 (U exists since K is finite), and consider the induced problem

G

1 K A/U B/α(U) 1

where the vertical map is the composition of ϕ with the natural projection. Since A/U

is finite, it has a solution ψ : G→ A/U, and the diagram

G

1 K A B 1

1 K A/U B/α(U) 1

ϕ

ψ

α

where the right hand square is cartesian by Lemma 4.1.5, shows the existence of a

solution ψ : G→ A to the original problem, induced by the maps ϕ,ψ.

Finally, assume that any embedding problem (4.1) is solvable whenever A is finite

and K is an abelian c-group: we show, by induction on the order of K, that any em-

bedding problem (4.1) with A finite and K a non necessarily abelian c-group is weakly

solvable. The case K = 1 is trivial.

If K 6= 1 is not a minimal normal subgroup in A, then pick N � K normal in A, so

that the problem

G

1 K/N A/N B 1

ϕ
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has a solution ψ : G → A/N by induction, which in turn gives a solution ψ : G → A via

the diagram
G

1 N A im(ψ) 1

1 N A A/N 1

ψ

where A < A is the preimage of im(ψ) < A/N, and a solution G → A exists again by

induction.

If K is a minimal normal subgroup of A, instead, suppose first K 6< Φ(A): then there

is a maximal subgroup M < A such that KM = A, so that the embedding problem

G

1 K∩M M B 1

ϕ

is well defined and has a solution ψ ′ by induction, which in turn yields a solution G→ A

via
G

1 K∩M M B 1

1 K A B 1

ϕ

α

.

Finally, if K < Φ(A), then [K,K] is either 1 or K, given that K is minimal normal in

A; since Φ(A) is nilpotent by Proposition 1.2.8, so is K, and subsequently we must have

[K,K] = 1. Hence, K is abelian and the problem is solvable by assumption.

The above proposition provides a link with cohomology: since, in order to decide

whether a profinite group G is c-projective, we only need to check embedding problems

where K is finite abelian, we are in fact dealing with extensions encoded by H2(B,K).

The following result enlightens the connection.

Proposition 4.1.6. Let G be a profinite group, and consider an embedding problem

G

1 K A B 1

ϕ

α

where K is a finite abelian group. If c ∈ H2(B,K) is the class associated with the above extension,

the problem has a solution if and only if inf(c) = 0 ∈ H2(G,K).
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Proof. According to Proposition 2.2.10, inf(c) is precisely the class associated with the

pullback
1 K A×B G G 1

1 K A B 1

ϕ

α

,

and consequently it is enough to prove that there exists a solution G → A to the em-

bedding problem if and only if the pullback extension admits a homomorphic section

G → G×B A. But this is plain: a homomorphic section induces a solution by compo-

sition with the pullback map A×B G → A; conversely, if ψ : G → A solves the above

embedding problem, the map g 7→ (ψ(g),g) is a homomorphic section for the pullback

extension.

Recall that, if c is a full class of groups, by π(c) we mean the set of primes p such that c

contains the cyclic group of order p.

Theorem 4.1.7. Let G be a profinite group, and let π = π(c). The following are equivalent.

i) G is c-projective.

ii) G is π-projective.

iii) cdp(G) 6 1 for all p ∈ π.

Proof. To show that (i) implies (iii), consider a discrete simple p-primary G-module A,

with p ∈ π, and notice an extension

1 A E G 1

splits, since the embedding problem

G

1 A E G 1

id

has a solution. Therefore, H2(G,A) = 0 and, since A was arbitrary, we get cdp(G) 6 1.

Now, assume cdp(G) 6 1 for all p ∈ π: in order to show that G is π-projective, by

Proposition 4.1.4 we may reduce to find a solution to every embedding problem

G

1 K A B 1

ϕ

α

,

with K a π-group which is a minimal normal abelian subgroup of A. Then, K contains

no nontrivial characteristic subgroup, and is therefore an elementary abelian p-group

for some p ∈ π: since H2(G,K) = 0, the problem has a solution by Proposition 4.1.6.

Finally, (ii) implies (i) trivially, since c-groups are, in particular, π-groups.
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Finally, we obtain the following characterization of projective objects in the category of

pro-c-groups.

Corollary 4.1.8. If G is a pro-c-group, the following are equivalent.

i) G is c-projective.

ii) G is projective.

iii) cd(G) 6 1.

iv) G is a subgroup of a free pro-c-group.

Proof. Assumption (i) implies (iv) by Remark 4.1.3, which also shows that a free pro-

c-group F is c-projective: thus, by the above Theorem, cdp(F) 6 1 for all p ∈ π, and

therefore also cd(F) 6 1 by Corollary 2.3.9, since if p 6∈ π(c) then surely p - #F. Then (iii)

follows by (iv) via Proposition 2.3.7. The implication of (ii) by (iii) is again contained in

Theorem 4.1.7, and (ii) trivially implies (i).

4.2 The case of pro-p-groups

We now wish to prove that a pro-p-group is projective if and only if it is a free pro-p-

group.

Remark 4.2.1. i) Recall that, if G is a pro-p-group, the only discrete simple p-primary

G-module is Z/pZ (see Proposition 2.3.5), and therefore cd(G) 6 n if and only if

Hn+1(G, Z/pZ) = 0. We shall denote Hn(G) = Hn(G, Z/pZ): it is plainly a p-torsion

abelian group, and therefore an Fp-vector space. Its dimension over Fp will be

denoted by dimHn(G).

ii) The Frattini subgroup of a pro-p-group G is Φ(G) = G ′Gp by proposition 1.2.14,

and G/Φ(G) is Pontryagin dual to H1(G), since

(G/Φ(G))g = Hom(G/Φ(G), Q/Z) = Hom(G, Z/pZ) = H1(G).

The equivalence (i)-(iii) in the following result can be interpreted as a p-group-theorethic

version of Nakayama’s lemma, with the Frattini subgroup playing the role of the Jacob-

son radical.

Proposition 4.2.2. Let ϕ : G→ H be a map of pro-p-groups. The following are equivalent:

i) ϕ is an epimorphism;

ii) the induced map H1(ϕ) : H1(H)→ H1(G) is injective;
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iii) the induced map Φ(ϕ) : G/Φ(G)→ H/Φ(H) is surjective.

Proof. Statements (ii) and (iii) are equivalent by Pontryagin duality. If ϕ is surjective,

then H1(ϕ) is clearly injective.

Conversely, suppose im(ϕ) � H and choose a maximal subgroup U < H containing

im(ϕ). Then U is normal of index p in H, so that the projection π : H → H/U ' Z/pZ is

a nonzero element in H1(H) = Hom(H, Z/pZ). Nevertheless, H1(ϕ) sends π to zero in

H1(G), so H1(ϕ) is not injective.

Proposition 4.2.3. Let G,H be projective pro-p-groups. If H1(G) and H1(H) are isomorphic, so

are G and H.

Proof. Let α : H1(H)
∼−→ H1(G) be an isomorphism. Then so is its dual map αg :

G/Φ(G) → G/Φ(H). The conclusion follows at once by the more general lemma be-

low.

Lemma 4.2.4. Let G,H be projective pro-c-groups, and ρ : G/Φ(G)
∼−→ H/Φ(H) an isomor-

phism. There exists an isomorphism ψ : G→ H lifting ρ, i.e. such that the diagram

G H

G/Φ(G) H/Φ(H)

ψ

ρ

commutes.

Proof. By projectivity of G, the embedding problem

G

G/Φ(G)

H H/Φ(H)

ρ

has a solution ψ : G→ H, which is surjective by Proposition 4.2.2.

Consequently, the embedding problem

H

G H

id
ψ

has a solution η : H → G since H is projective, i.e. ψ ◦ η = idH, so that η is injective

and η(H)ker(ψ) = G. Now, notice ker(ψ) < Φ(G) since ρ is injective: therefore, η is an

isomorphism and so is ψ.
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Theorem 4.2.5. Let G be a pro-p-group. The following are equivalent.

i) G is projective.

ii) G is a free pro-p-group.

iii) cd(G) 6 1.

Proof. We only need to show that (i) implies (ii). Let κ = dimH1(G), and consider

F = Fp(X) where |X| = κ. Then H1(F) = Hom(F, Z/pZ) identifies with the set of maps

X→ Z/pZ which are zero almost everywhere, due to the universal property of F, and is

therefore isomorphic to Z/pZ⊕κ. Consequently, there exists an isomorphism H1(F)
∼−→

H1(G), and Proposition 4.2.3 concludes.

Corollary 4.2.6. i) A profinite group G is projective if and only if, for all primes p, a p-

Sylow of G is a free pro-p-group.

ii) A subgroup H of a free pro-p-group G is again a free pro-p-group.

Proof. Statement (i) follows from the above theorem joint with Corollary 2.3.8, while (ii)

is a consequence of Theorem 4.2.5 and Theorem 2.3.7.

4.3 Iwasawa’s theorem

As a final application of our results on embedding problems, we are now going to prove

a theorem of K. Iwasawa about the Galois group of the maximal prosolvable extension

k̃ab of the maximal abelian extension of a global field k. Namely, we shall show that the

group G(k̃ab |kab) is the free prosolvable group on countably many generators. Note that

this implies, by Proposition 3.1.7, that the inverse Galois problem for solvable groups is

solved for kab. First, we need to recall some notions from algebraic number theory.

If k is a field and K |k is a Galois extension with Galois group G = G(K |k), we let

Hn(K |k,A) = Hn(G,A) for a G-module A. In particular, for a separable closure k of k, we

denote by Gk = G(k |k) the absolute Galois group of k, and set Hn(k,A) = Hn(k |k,A) =

Hn(Gk,A).

Suppose now that k is a global field, and K |k a separable extension. In order to

avoid the explicit choice of a prime P of K lying over p, we implicitly fix an embedding

ιp : kp ↪→ kp, or equivalently a prime of kp lying over p. Consequently, we have a

distinguished prime P of K over p, and we denote Kp = ιp(K)kp the localization of K at

P (or equivalently its completion, if K |k is finite).
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If moreover K |k is Galois, we write Gp(K |k) for the decomposition group GP(K |k) ⊂
G(K |k) and identify it with the local Galois group G(Kp |kp): in particular, we can view

G(Kp |kp) as a subgroup of G(K |k).

Therefore, for every G(K |k)-module A we have a restriction map

resp : Hn(K | k,A)→ Hn(Kp | kp,A).

If we fix a set of primes T of k, the restrictions above for primes p in T induce a homo-

morphism

Hn(K |k,A)→
∏
p∈T

Hn(Kp |kp,A).

To prove Iwasawa’s theorem, we need the above map to be surjective in degree 1 under

a specific set of hypotheses on T and A, assuming that K = k. This is a consequence of

the local duality theorem joint with Čebotarev density theorem (see [NSW15], Theorem

9.2.3 for a proof).

For a Gk-module A, consider the morphism Gk → Aut(A) induced by the action of G

on A, and let H < Gk be its kernel. The minimal trivializing extension k(A) is the extension

of k corresponding to H. Recall that, by Remark 2.3.3, a simple G-module A admits

exactly one prime p such that pA = 0.

Theorem 4.3.1. Let k be a global field, T a finite set of primes of k. For a Gk-module A and a

prime p, suppose either one of the following is true:

i) A is a finite simple Gk-module with pA = 0, p - char(k), and G(k(A) | k) is solvable;

ii) A is a p-primary Gk-module, and p = char(k).

Then, the restriction map

H1(k,A)→
∏
p∈T

H1(kp,A)

is an epimorphism.

We also need the following result about the cohomological dimension of specific exten-

sions of local and global fields, which is a consequence of the structure of their Brauer

groups (we refer to Theorem 7.1.8 and Corollary 8.1.18 of [NSW15]).

Theorem 4.3.2. Let K |k be a field extension, and p a prime. If p = 2 and k is a number field,

suppose moreover that K is totally imaginary.

i) If k is a local field and p∞ | [K : k], then cdp(GK) 6 1.

ii) If k is a global field and p∞ | [Kp : kp] for all primes p of K, then cdp(GK) 6 1.
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For a field k and some prime `, consider the maximal pro-`-quotient Gk(`) of Gk (see

Remark 1.2.2), and note that Gk(`) is the Galois group of the maximal pro-`-extension

k(`) |k. As a consequence of the local duality theorem, the maximal pro-`-quotients of

Gk are well understood for a local field k. In particular, we have the following result, a

proof of which can be found in [NSW15], Proposition 7.5.9.

Lemma 4.3.3. Let k be a local field of residue characteristic p, and ` 6= p a prime. Then

Gk(`)
ab ' Z` ⊕U, with U a (possibly trivial) finite cyclic `-group, where Gab = G/[G,G] is

the abelianization of a profinite group G.

We may now turn to the proof of Iwasawa’s theorem, starting with a technical result.

Denote the inertia group of an extension K |k of valued fields by T(K |k), and in particular

set Tk = T(k |k) for a fixed separable closure k of k.

Lemma 4.3.4. Let K |k an infinite abelian extension of a global field k. For every choice of a

finite group E and a finite separable extension K ′ |K, there exist primes P1, . . . ,Ps of K and

homomorphisms ϕi : GKPi
→ E such that

i) P1, . . . ,Ps split completely in K ′;

ii) E is generated by the images of the ϕi.

Proof. It is enough to prove that, for a fixed prime `, there are infinitely many primes P

of K that split completely in K ′ and admit an epimorphism GKP
� Z`.

By Čebotarev density theorem (see [Neu99], Theorem 13.4), we may find infinitely

many primes P of K which are completely decomposed in K ′ and such that KP contains

a primitive `-th root of unity ζ if ` differs from the characteristic of k: take a finite

extension K0 |k inside K and a finite separable extension K ′0 |K0 such that KK ′0 = K ′ and

consider the prolongations to K of infinitely many primes of K0 that split completely in

K ′0(ζ), or simply in K ′0 if ` = chark.

Fix now such a P and let p = P ∩ k be its contraction to k. Suppose first that

the maximal unramified `-extension L of kp inside KP is finite: if k̃p(`) is the maximal

unramified `-extension of kp inside a fixed separable closure, G(k̃p(`) |L) is an open

subgroup of G(k̃p(`) |kp) ' Z`, and is therefore isomorphic to Z` itself. Consequently,

the projection GKP
(`)/TKP

(`)� G(k̃p(`) |L) induces the wanted epimorphism.

Conversely, if L is infinite, we must have KP ⊃ k̃p(`). If ` differs from the residue

characteristic p of kp, we have GKP
(`) ' TKP

(`) for ζ ∈ KP. Since KP |kp is abelian,

T(KP |kp)(`) is a subquotient of Gkp(`)ab, and is hence finite by Lemma 4.3.3; therefore,

GKP
(`) is an open subgroup of Tkp(`) ' Z`, and the conclusion follows.
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Finally, if ` = p and M is the maximal pro-p extension of k in K, GMP
(p) is a free

pro-p-group by Theorems 4.3.2 and 4.2.5, and so is GKP
(p) by Corollary 4.2.6, hence we

have a surjection GKP
(p)� Zp by Proposition 3.1.7.

Theorem 4.3.5 (Iwasawa). Let K be the maximal abelian extension of a global field. If K̃ is the

maximal prosolvable extension of K, its Galois group G = G(K̃ |K) is the free prosolvable group

of countable rank.

Proof. Since there are at most countably many finite separable extensions of K in a fixed

separable closure, d(G) 6 ℵ0. By Theorem 3.2.7, we need to show that (in the notation

of the theorem) every embedding problem for G with finite solvable A has a strong

solution.

Consider the diagram

GK

G

1 C A B 1

ϕ

α

(4.2)

where the map GK → G is the canonical projection and A is a finite solvable group. If

we can find a strong solution GK � A, it will factor to a map G� A since A is solvable

and G is the maximal prosolvable quotient of GK by definition.

Identifying C with a subgroup of A, and choosing a B-submodule C ′ < C normal in

A, suppose we find a strong solution ψ for the problem

G

1 C ′ A/C ′ B 1

ϕ

α ′

,

where α ′ is induced by α; then we also get a solution for the above problem by consid-

ering the diagram

G

1 C ′ A A/C ′ 1

1 C A B 1

ψ

α ′

α

.

Thus, by arguing inductively, and using the fact that A is solvable, we may reduce to the

case where C is an abelian simple B-module.
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As a consequence of Theorem 4.3.2, we have cd(GK) 6 1: therefore, the embedding

problem (4.2) with C an abelian simple B-module has a weak solution ψ : GK → A by

Corollary 4.1.8. Let N = ker(GK � B) and call ψ0 the restriction of ψ to N. Because C

is simple, im(ψ0) is either C or 0. In the first case, ψ is actually surjective and factors

through G, so we are done. We may therefore assume im(ψ0) = 0.

Let B = G(K ′ |K), with K ′ an intermediate extension of K̃ |K, so that C is a trivial

G(K̃ |K ′)-module. Note we may write G = G(K̃ |K) = lim←−kG(K̃ | k), where k runs through

all the finite subextensions of K: by Proposition 1.1.12 we can find a finite subextension

k0 of K such that ϕ : G → G(K ′ |K) factors to a map ϕ : G(K̃ |k0) → G(K ′ |K). If we let

ker(ϕ) = G(K̃ |k ′0), we obtain a finite extension k ′0 |k0 such that G(k ′0 |k0) ' G(K ′ |K) and

K ′ = Kk ′0.

Then clearly, for all intermediate fields k0 ⊂ k ⊂ K finite over k0, by letting k ′ = kk ′0
we have G(k ′ |k) ' G(K ′ |K) and K ′ = Kk ′. For all such k, we may view K as a Gk-module

via the projection Gk � G(k ′ |k) ' G(K ′ |K).

By Lemma 4.3.4, we can find primes P1, . . . ,Ps of K and homomorphisms ϕi :

GKPi
→ C such that the Pi split completely in K ′ and C = 〈im(ϕi) | i〉. Up to re-

placing k0 with a finite extension, we may also assume that the contractions pi = Pi ∩ k0
split completely in K ′ (and the same is true for finite intermediate extensions k | k0).

Fix k as above: since C is a simple Gk-module and G(k ′ |k) is solvable, Theorem 4.3.1

implies that the restriction homomorphism

H1(k,C)→
s∏
i=1

H1(kPi ,C)

is surjective. Passing to the direct limit by Corollary 2.1.12, we obtain that

H1(K,C)→
s∏
i=1

H1(KPi ,C)

is again an epimorphism by exactness of lim−→.

Since the Pi split completely in K ′, the decomposition group G(K ′Pi |KPi) is trivial,

and so C is a trivial GKPi
-module. Thus, H1(KPi ,C) = Hom(GKPi

,C), and (ϕi | i) is an

element of
∏s
i=1H

1(KPi ,C). We may thereby pick a preimage c ∈ H1(K,C) of (ϕi | i).

Let f be a 1-cocycle representing c, and call ψ ′ : GK → A the map defined by ψ(σ) =

f(σ)ψ(σ). Then, since ψ0 = 0, the restriction ψ ′0 of ψ ′ to N is simply f, and is therefore

surjective, because GKPi
< N, f coincides with ϕi on GKPi

and C = 〈im(ϕi) | i〉.

Thus, ψ ′ is surjective and factors to an epimorphism G� A lifting ϕ.

We conclude by noting that it is known that, at least when looking for a finite solvable

extension of a global field without additional properties, the inverse Galois problem has
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an affirmative answer. Using methods that go beyond the scope of this dissertation, I.

R. Šafarevič proved the following (see [NSW15], Theorem 9.6.1).

Theorem 4.3.6 (Šafarevič). Let k be a global field and let G be a finite solvable group. Then

there exists a Galois extension K |k with G(K |k) = G.
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